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Dry beans are the sixth most grown crop in Haiti and represent an excellent and 

affordable source of protein for low-income families. However, according to a study 

conducted by Michigan State University in 2010, an annual decrease of 1.1% is 

observed in the yield of dry beans cultivated in Haiti during the decade 1994-2004. In 

this study, the potential impact of the annual climate cycle known as El Niño- Southern 

Oscillation (ENSO) on dry beans grown at Duvier, in Haiti, was investigated. The 

SIMPLE crop model was used to simulate yields for 37 years of weather data and three 

main growing seasons: November, April, and July. The ANOVA of the model simulated 

yields showed there were no significant dry bean yield responses to ENSO phases 

during the November and April seasons. However, in the case of dry beans planted in 

July, yields were significantly lower in El Niño years than La Niña and Neutral years. A 

plausible explanation for this was that a more complicated climate pattern generally 

dominates July seasons. Known as the mid-summer drought, since the Caribbean low-

level jet peaks during that time, ENSO phases tend to be amplified during this season, 

as are its effects on bean yield in the study region. Simulation results also showed that 

sowing early during the November season leads to a 60% probability for above-average 
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yields. Whereas, planting late during the other two seasons was more beneficial with a 

chance of up to 60% to result in higher yields.
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CHAPTER 1 
INTRODUCTION 

 
Ridding the world of hunger is the second sustainable development goal set by 

the United Nations (UN) for 2030 (Johnston, 2016). Consequently, current agriculture 

production worldwide should double to meet expected growth in human population and 

associated demand for food (Iglesias et al., 2011). However, due to the sensitivity of 

agriculture to climate variability, a slower increase in food production is expected in the 

future (Iglesias et al., 2011). This sensitivity to climate variation, has drastic implications 

for the economy worldwide, as agriculture holds a significant share in the Gross 

Domestic Product (GDP) of many countries (Byerlee et al.  2011). Given the importance 

of agriculture as an economic sector and food supplier, the links between climate 

variability with agricultural productivity have broad economic implications. Crops 

productions, climatic shocks, and food prices are interrelated (Bellemare, 2015). 

According to Bellemare (2015), an increase in food price during the world food crisis in 

2007 and 2008, as a result of climatic shocks, led to several unrests in many developing 

countries. Therefore, farmers must consider climate information when making decisions 

about which crop to grow, when they should sow or harvest to earn a maximum profit or 

decrease losses.  

Since the industrial revolution, the amount of greenhouse gases emitted into the 

atmosphere has significantly increased. The continued emission of these gases, which 

include carbon dioxide (CO2), methane (CH4), and nitrogen dioxide (NO2), have 

exacerbated the greenhouse effect. More energy trapped in the system has increased 

weather extremes around the globe (Kreft & Eckstein, 2014). Thus, extreme weather 
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events, including droughts and excess rainfall, have severe consequences on 

economies worldwide, and particularly on a weather-sensitive sector like agriculture.   

Numerous studies indicate that severe weather conditions, like droughts, 

extreme temperatures, and flooding, are bound to occur more frequently under the 

ongoing climate change and will affect the agricultural activities more severely (Bates, 

Kundzewicz, Wu, Palutikof, & Eds., 2008; G. Wang & Hendon, 2007). El Niño Southern 

Oscillation (ENSO), as part of a global set of climatic anomalies, is the most intense, 

most robust, and well-explained pattern of inter-annual climate variability (Hammer et 

al., 2001). Moreover, this phenomenon is related to cycles of droughts and flooding 

events and describes between 15% and 35% of worldwide yield fluctuation of staple 

crops (Iglesias et al., 2011). Agriculture can be affected by ENSO cycles in multiple 

ways, including changes in crop yield because of associated changes in precipitation 

and temperature (Roberts, Dawe, Falcon, & Naylor, 2009) or effects on the 

development of fungi diseases and pest damage (Iglesias et al., 2011). Therefore, 

climate variability related to El Niño Southern Oscillation (ENSO) represents a severe 

threat to crop yields including that of major staples such as maize, rice, dry beans and 

other legumes (Legler et al. 1999). 

Researchers use crop models to understand how climate variability affects yields 

and develop strategies to adapt crop system production to the changes. Crop modeling 

is one of many fundamental approaches to manage the impacts of ENSO on crops, as 

they can help us detect the effect of this phenomenon on biomass accumulation. 

Indeed, the effects of climate variability on yields have been extensively discussed in 

research for some time. However, the use of crop models for seasonal yield forecasts 
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has become increasingly popular recently. One reason for this is the ability for modelers 

to help guide agricultural decisions in light of climate risks (Asseng et al., 2013; Gelcer 

et al., 2018; Lobell & Asseng, 2017; Royce et al., 2011). Indeed, the use of such models 

to predict yield and support decision-making during favorable and non-favorable years 

has increased in recent years (Niyogi et al., 2015).  

Agricultural Production at Risk in Haiti 

As is the case for many countries in the Caribbean, agricultural activities are a 

significant component of the Haitian economy. Agriculture employs more than half the 

Haitian population and represents the primary source of income in rural areas. 

According to the World Bank, Haiti’s population is over 10 million and is growing fast 

(world bank, 2015). The annual demand for food surpasses local production, which in 

turn results in a heavy dependency on imports and rampant food insecurity.  Agricultural 

productivity, and especially the production of legumes like dry beans, highly depends on 

the climate. Since most of the land reserved for dry beans production have low to no 

access to irrigation, the ENSO cycles impact this legume severely.Without accounting 

for ENSO-added variability, the rugged topography increases the number of micro-

climates on the territory. Moreover, ENSO signals are often masked by quick variations 

in altitude due to the ruggedness of the land. Climate variability and other factors related 

to seed quality, soil fertility, agriculture credit, and government subsidies are the 

fundamental causes of low crop yield. 

Among all the other crops grown in Haiti, dry bean (Phaseolus vulgaris L.) has 

the second-highest demand after rice for direct human consumption in Haiti. In terms of 

harvested area, it is the sixth most important crop grown in the country (Beebe, Rao, 

Blair, & Acosta-Gallegos, 2013). Dry beans are the cheapest source of protein, thereby 
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constituting an essential component of people’s diet and represent the cheapest source 

of protein. Nicknamed the ‘the meat of the poor,’ beans are affordable regardless of 

household income.  Dry beans are cultivated in highlands as well as in low lands 

throughout the country. Although this crop is easy to grow, it faces many biotic and 

abiotic threats that can cause yields to decrease by more than 50% (Porch et al., 2013). 

Common abiotic risks include soil salinity as well as heat and water stress induced by a 

lack of rainfall and high temperatures (Porch et al., 2013).  These conditions can 

significantly affect the yield of dry beans depending on the phenological stage during 

which they affect the crop. According to a study conducted by Michigan State University 

in 2010, dry beans yield was decreasing at an annual rate of 1.1 % in Haiti (Michigan 

State University, 2010). Whether this decreasing trend is related to ENSO has not been 

established. 

Crop modeling-based approaches are used in many tropical countries in Africa 

and Latin America to help detect climate impacts on crop production but not in Haiti 

(Abdolrahimi, 2016; Singh & Cohen, 2014). To the author’s knowledge, there is no 

evidence of previous research or crop modeling efforts investigating the relationship 

between interannual variability of climate and dry beans yield in Haiti. In this study, the 

SIMPLE crop model was used to evaluate the yield of dry beans under varying climate 

conditions in Duvier, a town located in the mountain range of Port-au-Prince.  

This research hypothesizes that the El Niño Southern Oscillation has a significant 

influence on the variability in dry bean yield during all dry beans growing seasons in 

Duvier. 
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Objectives  

The overall objective of this study is to quantify the response of dry beans yields 

to weather conditions associated with ENSO and discuss the impacts of the 

phenomenon during the main dry beans growing seasons in Duvier, Haiti. Specifically, 

this research aimed  :  

• To evaluate the effects of ENSO on dry beans simulated yields with the SIMPLE 
crop model (Zhao et al.,2019); 

• To determine which dry beans growing seasons and sowing dates are more 
likely to be affected by ENSO phases;  

• To identify potential benefits from application of ENSO-based climate forecast for 
dry beans production in Haiti. 
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CHAPTER 2 
LITERATURE REVIEW 

History of ENSO  

Early during the sixteenth century, fisher people from the coast of Peru and 

Ecuador noticed a yearly cycle of unusual warming of the sea surface water during 

winter (Abdolrahimi 2016). Yearly during the onset of the season, a stream of warm 

water heading south would disrupt the cold waters. However, this atypical warming 

would come earlier than anticipated every five to seven years, prolong into early 

summer and lasted over a year (Giralt et al., 2007). The southward-flowing of 

abnormally warm waters augmented the sea-surface temperature significantly and 

affected the fishery industry due to unfavorable heat and nutrient scarcity (Giralt et al. 

2007). Besides, Peruvian geographers noticed the warm phase would persist for 

several years (Turner, 2004). The phenomenon was named after “the Christ Child” 

since it happened during Christmas, hence the term El Niño devised by the fishermen 

(Mjelde et al. 2006). The documentation of ENSO started in the scientific community 

with the collaboration between Peruvian researchers and researchers from abroad at 

the dawn of the 20th century (Lobell & Burke, 2008). Subsequently, they acknowledged 

El Niño as a wide-ranging event linked to the warming of the tropical Pacific Ocean 

(Turner 2004) with a cycle of 3.8 years. 

Usually, the sea level pressure (SLP) in the south-central Pacific is comparatively 

higher than the Northern Australia and the Indian Ocean region combined. During 

ENSO neutral conditions, surface trade winds blow westward across the equatorial 

Pacific Ocean. These winds generate westward current. During El Niño conditions, the 

winds decrease in intensity and the current reverse. The decrease in strength of the sea 
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level pressure difference among the eastern and western side produced calm trade 

winds every couple of years and causing drought in the west of the Pacific Ocean. The 

Southern Oscillation Index (SOI) was devised by Walker to measure these fluctuations. 

Bjerknes confirmed, through the analysis of El Niño and Southern Oscillation data 

collected during the periods 1957-1958, 1963-1964, 1965-1966, the interactions 

between the ocean and the atmosphere in the tropical Pacific (C. Wang & Fiedler, 

2006). Succeeding Bjerknes, Wyrtki (Bjerknes, 1964, 2012) devised an original 

structural description of El Niño inception. Bjerknes utilized evidence of wave 

measurements to observe the level of the sea in the tropical Pacific (Bjerknes, 1964).  

Before the intense episode El Niño of 1982-83, ENSO research was not 

envisioned.  The insufficient knowledge about the intensity of the warm phase and the 

full progression of the phenomenon sparked the interest of researchers from tropical 

countries to look into the description of ENSO and its forecast (G. Wang & Hendon, 

2007). 

ENSO Worldwide Climate Impacts 

The verifiable recorded events such as scriptural dry seasons in Egypt are proof 

that The ENSO cycle has been an element of Earth's atmosphere for a long time 

(Eltahir, 1996; Lu et al., 2018). El Niño impacts on the climate of Peru goes back to the 

year 1525 (Abdolrahimi 2016b). The associations among sea and climate in the tropical 

Pacific region have been connected to atmosphere fluctuations on the planet 

(Ropelewski & Halpert, 1996). Several studies research the connection between ENSO 

and precipitation. Ropelewski and Halpert (1996) directed the most comprehensive 

research that collected overall information from 2000 precipitation stations.  
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El Niño-Southern Oscillation episodes can alter the climate pattern in more than 

two-thirds of all countries in the world (Verchot et al., 2007). Compelling evidence 

demonstrates that precipitation and temperature difference patterns are related to 

ENSO index signals (Wang and Fiedler, 2006). The ENSO impacts on the tropics are 

immediate and extreme, particularly in storm influenced nations in Asia, Australia, and 

Africa. Also, ENSO represents a considerable extent of precipitation and temperature 

changes in many countries in America (Hammer et al. 2001). The significant worldwide 

El Niño fluctuation is surpassing the mean temperature inconsistencies over the pattern 

(Salinger, 2005). It has been demonstrated that precipitation on the planet is influenced 

by ENSO events, although the degree of the impact varies with the area (Crasswell & 

Simpson, 1993). Hsiang and Meng (Hsiang, Meng, & Cane, 2011) show +1°C 

increment in Niño3.4 record results in +0.27°C rise in tropics nearby temperature and - 

4.6cm precipitation reduction. ENSO quality and the severity of impacts are connected, 

it is generally flimsier for La Niña events (Lyon B. & Barnston A. G., 2005). El Niño 

causes an eastbound move in tropical rainstorm pattern, so that, abnormal climatic 

conditions emerge over northern Australia and Indonesia. Besides, researchers 

observed drier winters in southeastern Africa and northwestern India. Contemporary, in 

the central and eastern Pacific and west bank of South America precipitation level 

unreasonably raise (Salinger 2005). Usually, dry seasons in the western Pacific, above-

average rains over the tropical coast of South America and the event of thunderstorms 

and blizzards in the Pacific region are an El Niño-instigated worldwide atmosphere 

variety (Cashin et al. 2017). Practically inverse scenarios occur during La Niña episode 
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(Salinger 2005). The global climatological impacts of an El Niño and La Niña episode 

are condensed. 

Influence of ENSO in the American Continents  

Grimm et al. (1998) were the first to demonstrate the ENSO-induced temperature 

and precipitation variety in southeastern South America (Argentina, Brazil, Uruguay). 

The warm episode of ENSO presents positive precipitation irregularities during 

November– February, and cold event causes atypical precipitation during June-

December. Grimm et al. (1998) express the inconsistency level is bigger in Uruguay 

than Argentina and Brazil. There is proof that ENSO influences precipitation during 

November– February, a lower degree, and during October– December in southern 

Brazil and Uruguay (Diaz et al. 1998).  

Podesta et al. ( 2002)  claim Argentina experiences more than average 

precipitation during El Niño events, while it is the opposite during La Niña. Wet summer 

during El Niño years that results in flooded fields in Argentina and incredibly dry 

summer causes dry season during La Niña years (Pol & Binyamin, 2014).  According to 

Grimm (Grimm, 2003) during El Niño, within the period starting from January through 

March, Northeast Brazil receives above-average precipitation whereas it tends to 

decrease drastically over the Amazonian region for the same period. However, during 

the summer, El Niño events tend to cause drought in both Northeast of Brazil and the 

Amazon (Grimm 2003). El Niño events are related to lower temperature in the southeast 

U.S. winter. 

Izaurralde et al. (1999) demonstrate the air temperature and precipitation 

deviation of a moderate and strong El Niño episode from the ordinary condition in North 

America. They conclude that winters are hotter during the two instances of El Niño; 
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aside from the eastern U.S. (in moderate El Niño) and tropical Mexico location. More 

torrid spring and Summer seasons occur during a mild and strong El Niño episode, 

however not in subtropical Mexico and the U.S. (during Spring strong El Niño). Except 

for Canada and Mexico (under moderate El Niño event), air temperature diminishes in 

northern America during harvest time in winter. There is abnormal precipitation in 

summer in the U.S or pre-winter in Canada during the El Niño episode. Winter 

precipitation diminishes in Canada, subtropical Mexico and the U.S. Corn Belt in 

moderate El Niño episode. In Spring of a moderate El Niño, precipitation increments in 

Mexico and diminishes in other areas. During strong El Niño, spring is wetter than 

typical years, except for Canada. Phillips et al. (1999)  demonstrated that summer 

temperature and precipitation in the U.S. Corn Belt are contrarily connected with Niño3 

record, separately. 

Influence of ENSO in the Caribbean 

In most of the regions of the Caribbean, precipitation is bimodal with a rainy 

season that ranges from April to June and another one that spans the period from 

August to November (Giannini et al. 2000). The first season has a peak in May and the 

second in August. This general trend is different for the southern part of the Caribbean, 

closer to the coast of Venezuela where the primary rainy season occurs during winter 

(November-January). The precipitation in the Caribbean is influenced by both the 

eastern Pacific and the North Atlantic oceanic (NAO) and atmospheric pattern (Jury et 

al. 2007). According to Georges and Saunders (George & Saunders, 2001), the NAO 

positive phase, amplified by the North Atlantic trade winds, is accompanied by lower 

than average rainfall. The ENSO influence on rainfall is related to the subtropical jet 

stream change of direction toward the equator during the warm phase, which 
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exacerbates the late -and early summer drought. Therefore, warm ENSO events are 

associated with anomalously dry conditions during the later Caribbean rainfall season. 

There is also a delayed impact with declining warm ENSO events in boreal spring 

related to anomalously wet conditions over the Caribbean (Chen & Taylor, 2002). The 

intensity of the relationship between the tropical Pacific and Caribbean basin may also 

be modulated by central and eastern Pacific ENSO events (Gouirand, Moron, Hu, & 

Jha, 2014). During La Niña or the cold phase, weather conditions are wetter than 

average during the rainfall season of August-November. This season is associated with 

hurricane season that starts in June to end in November.  

Therefore, this rainfall season can be exacerbated during La Niña. According to 

Giannini et al. (2001), the Caribbean low-level jet (CLLJ) influence significantly the way 

ENSO affects rainfall in the Caribbean. The CLLJ is a strong wind blowing from the 

North Atlantic toward Central America, following the pressure gradient of the North 

Atlantic Subtropical High (NASH). In February and July, these winds intensify creating 

conditions drier than usual during El Niño. 

Evidence of the Relationship between ENSO and Food Security 

Despite significant achievements in new farming techniques and technologies 

around the world, agriculture is still strongly dependent on atmosphere and climate as a 

significant factor in deciding profitability. Since this sector requires specific levels of 

solar radiation, temperature, and rainfall to enable crop development, it is particularly 

sensitive to ENSO (Iglesias et al. 2000). In 1972 abnormal atmospheric conditions 

drastically affected agriculture worldwide causing a humanitarian crisis.   

A further consequence of the intense El Niño episode of 1972-73 was the 

disruption of the fishery industry along the west coast of South America. As an 
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alternative to cope with the shortage of fish, farmers switch to the use of soybean as a 

source of protein to feed their hens. This situation appealed U.S. ranchers to grow 

soybean as a trade for wheat. It was done at a time when wheat was a highly needed 

crop, and worldwide food crisis was grave (McPhaden et al. 2006).  

The El Niño of 1982– 83 was one of the most powerful episodes of the twentieth 

century. In Peru, several crops, including staples and legumes, were completely 

ravaged (Iglesias et al. 2000). As a result, food prices significantly increased, and 

millions of farmers became food insecure (Cavledes, 1985, Iglesias et al.,2000).  

The 1997– 98 El Niño events, again, stunned mainstream researchers due to 

their abrupt beginning and amplitude (McPhaden et al. 2006). The worldwide financial 

expense of this was about US$100 billion, and 110 million people touched with famine 

(FAO, 2007). In the southeast of South America, rich soil dampness identified with a 

typical wet El Niño was beneficial a record in Brazil and Argentina for soybean crop, 

though in Central America trade vegetable production was affected during the dry 

season.  

Crop Modelling 

Crop models are simulation models that are designed to replicate crop growth 

and development as a function of management and environmental conditions. 

Simulation models are available for many important crops such as wheat (Asseng et al. 

2013), maize (Bassu et al., 2014), rice (Li et al., 2015) and potato (Fleisher et al., 2017). 

Only a few models have been developed for oil and fiber yields, vegetables, and organic 

products, limiting research, policy, and decision-making (Zhao et al., 2019). The 

parameterization, calibration, and evaluation of a full-scale process-based model often 

requires a lot of data on the characteristics of the crop, environmental conditions and 
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management strategies, which may limit their application (Jones et al., 2003; Keating et 

al., 2003). For instance, DSSAT stands out amongst the most broadly utilized yield 

models, requires many genotype-specific parameters, which are not always available 

(Zhao et al., 2019). In an attempt to compensate for missing data, many functions or 

models have subsequently been developed. These include Expolinear development 

functions (Monteith & Ross, 2006), the EPIC model (Izaurralde, Williams, McGill, 

Rosenberg, & Jakas, 2006), the AquaCrop model (Steduto, Hsiao, Raes, & Fereres, 

2009) and the LINTUL (Haverkort et al., 2015). These models often still require many 

parameters, similar to 22 for EPIC and 29 for AquaCrop (Zhao et al. 2019). 

Statistical models represent an alternative to dynamic harvest models (Lobell & 

Asner, 2003). These have been used to investigate the effect of environmental change 

on yields, for which crop-specific models are not yet available (Lobell & Asseng, 2017). 

However, statistical models are generally ineffective in characterizing the biophysical 

processes of the system when taking into account the relationship between the 

atmosphere, genetic features, and crop management (Lobell & Burke, 2008). As such, 

statistical models are frequently limited to surveying past atmosphere effects and are 

less pertinent for future situations. A deterministic approach, instead of a stochastic 

approach, can restrict our conclusion on the impact of atmospheric conditions on crop 

development because they are continually changing. It is necessary to try random 

values of the variables to constitute what-if scenarios, and thus determining the 

sensitivity of the model to the evolving conditions (Gelcer et al., 2018; Zhao et al., 

2019).



 

25 

CHAPTER 3 
METHOD AND DATA 

Study Area 

This study was conducted for a location in Duvier, a rural town located at 18° 29' 

44 N of latitude and 72° 15' 24 W of longitude, about 7 kilometers away from the 

commune of Port-au-Prince to the south-east direction, in Haiti (Figure 3-1).  The 

location is almost 887 m above sea level and is part of one of the numerous mount 

regions of the mountain range "Chaine de la Selle" in the west area of Haiti. The mean 

annual air temperature is lower than in the city of Port-au-Prince and during winter 

months, and it can be cold relative to other parts of the country. Duvier is classified as 

tropical savanna or tropical wet and dry climate. This type of weather corresponds to the 

Köppen climate classification categories "Aw" and "As." Tropical savanna climates have 

monthly mean temperatures above 18 °C  in every month of the year and a typically 

pronounced dry season. The driest month has less than 60 mm of precipitation. The dry 

season at Duvier generally starts in late November through early March. The driest 

months are necessarily December and January. The rainfall season can be divided into 

two, one that begins in April and ends in June and the other starts in August. Figure 3-3 

shows a peak in rainfall during the first season in May and the second peak in 

September-October. July is sometimes considered as a transition between rainy 

seasons, and it is referred to as the term mid-summer drought (C. Wang, 2007). 

The main crops grown in this locality are vegetables such as pepper, tomatoes, 

cabbage, and beans, the latter being the most important crop in terms of nutritional 

value. This crop is cultivated everywhere in the country with some areas growing a 

higher acreage than others.  Figure 3-2 shows the spatial distribution of dry beans 
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production in the country where the dark green areas are locations with a yearly 

harvested area of 1416 ha or more. 

Weather Data 

The model requires daily weather data to simulate crop development and growth, 

including minimum and maximum air temperature, solar radiation, and precipitation. 

Historical weather data for Duvier is limited and sometimes inexistent. As the model 

requires continuous weather data records over at least 30 years, gridded weather data 

were used. The minimum and maximum daily total air temperature in Celsius, and daily 

solar radiation in MJ/m2 data for the period starting from 1987 to 2017 were acquired 

from the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010). The spatial 

resolution of this dataset was 0.25o and offers a reliable interpolation of temperature 

and solar radiation observations (Saha et al. 2010). The daily rainfall totals in 

millimeters for the same period were obtained from the Climate Hazards Infrared 

Precipitation with Stations (CHIRPS) dataset. CHIRPS combines satellite data, at a 

spatial resolution of 0.05°, with on-site weather stations to generate gridded rainfall time 

series  (Funk et al., 2015).  

Classification of ENSO Phases 

The Oceanic Niño Index (ONI) is the index used by  NOAA to classify  El Niño 

(warm) and La Niña (cold) episodes in the tropical Pacific (Dahkman, 2009).  It reflects 

the running 3-month mean SST anomaly for the Niño 3.4 region (i.e., 5o N-5o S, 120o -

170o W).  Events are defined as five consecutive overlapping 3-month periods at or 

above the +0.5o anomaly for warm (El Niño) events and at or below the -0.5 anomaly for 

cold (La Niña) events. The threshold is further broken down into Weak (with a 0.5 to 0.9 

SST anomaly), Moderate (1.0 to 1.4), Strong (1.5 to 1.9) and Very Strong (≥ 2.0) 
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events.  For an event to be categorized as weak, moderate, strong or very strong in this 

study, it must have equaled or exceeded the threshold for at least three consecutive 

overlapping 3-month periods (APPENDIX). Given the short season duration simulated 

in this research, a crop season was classified as El Niño if the sowing date falls within a 

month triplet for which the anomaly is greater or equal to the +0.5 oC. The same rule 

applied for La Niña years for a corresponding anomaly of 0.50 oC or less Classification 

of ENSO Phases (Dahkman, 2009) (Figure 3-4). 

Crop Model Simulations 

The SIMPLE crop model (Zhao et al. 2019)  was selected to simulate common 

bean yield in the region of study. The SIMPLE model has 13 parameters, of which four 

are cultivar-specific. The model was developed in R and DSSAT and calibrated for 14 

crops, including green bean and dry bean  (Zhao et al. 2019). 

Many of the parameters were derived from all established literatures. These 

include RUE (radiation use efficiency), the existing CROPGRO DSSAT (Jones et al. 

2003) and model parameters for dry bean (such as the base temperature, the optimal 

temperature for crop development, harvest index (HI)  and CO2  or computed harvest 

indices found in DSSAT outputs). Other coefficients were calibrated (e.g., Tsum) for the 

specific data sets of aboveground dry matter accumulation, percent light interception, 

and final economic yield (dry grain, fresh tomato, fresh bean, fresh banana).  

The SIMPLE model runs at a daily time-step, and requires the following inputs:  

• Rainfall and irrigation; 

• Temperature; 

• Solar radiation; 

• Elevated atmospheric CO2 concentration; 

• Cultivar differences; 

• Soil water-holding characteristics. 



 

28 

 
A SIMPLE water budget routine simulates water stress without detailed soil 

profiles. The Priestley and Taylor equation (Stannard, 1993) is used to simulate crop 

evapotranspiration demand and the ARID (Woli et al. 2012a) water stress index model, 

based on rainfall/irrigation and a SIMPLE soil-water balance based on a single soil 

computational layer. The SIMPLE model does not take into consideration the 

fertilization input, like N, or vernalization requirements and photoperiod sensitivity, frost, 

pest and disease impacts. The subroutines in the SIMPLE model have been tested in 

the US under different conditions (Zhao et al. 2019) including temperature and heat 

stress (wheat), and delayed sowing dates or different seasons (wheat, soybean, 

potatoes, tomato), water balance (wheat, maize, soybean, dry bean) and CO2 (wheat, 

cotton). The SIMPLE model has not yet been tested in Haiti. 

Single treatment data were available for extensive model testing and calibration 

for rice, green bean, sweet corn, peanuts, carrots, cassava, banana. Besides, a 

sensitivity analysis with increments of temperature change and atmospheric CO2 was 

carried out for different growing conditions for wheat, maize and soybean showing 

expected responses to these factor changes for crop production in the US (Zhao et al. 

2019). 

SIMPLE Model Description 

Equations used in the SIMPLE model account for the impact of heat stress, water 

stress, daily temperature, and CO2 concentration.  

SIMPLE uses daily air temperature to define phenological development based on 

degree days accumulation as follows: 
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TT = T-Tbase, T> Tbase; TT = 0, T ≤ Tbase          (3-1) 

TTi+1 = TTi + TT          (3-2) 

 
Where, TTi is the aggregate mean air temperature for a particular day number, 

and ΔTT is the mean air temperature to be augmented daily. T is the daily mean 

temperature, and Tbase is the base temperature for phenological development and 

also, for crop growth. For simplicity, the model starts to accumulate the temperature 

required to achieve maturity when it surpasses the base temperature of the crop, 

regardless of an optimal threshold for the temperature (Zhao et al. 2019). However, 

canopy degeneration is quickened with heat stress causing the model to speed up crop 

development by reducing the time to maturity. A cumulative temperature requirement 

from sowing to maturity (Tsum) is used to reach physiological maturity in the model.  

SIMPLE relies on the concept of radiation use efficiency (RUE) concerning 

photosynthesis. RUE is the actual fraction of radiation that is captured by the plant 

canopy and converted into crop biomass. The growth here refers to the amount of 

biomass produced by the plant that does not include non-harvested parts like usually 

the roots. The final yield is obtained by multiplying the biomass by the harvest index of 

the crop. The daily biomass is affected by the variation of daily temperature, heat, water 

stress, and the amount of CO2 available in the atmosphere. 

Biomass_rate   = Radiation x fsolar x RUE x fCO2 x fTemp x min (f(Heat), 

f(water)) 

 (3-3) 

Biomass_cumi+1= Biomass_cumi + Biomass_rate  (3-4) 
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                Yield= Biomass_cummaturity x HI   (3-5) 

 

The biomass rate is the rate at which the crop grows every day, while 

Biomass_cum is the aggregate of the biomass for a particular day number. RUE stands 

for radiation use efficiency. fCO2, fHeat, fTemp, fWater, are respectively CO2 impact, 

heat stress, temperature impact, and water stress on biomass accumulation. All of 

these factors penalize the growth accumulation of the crop. fSolar is the fraction of solar 

radiation that is captured by the plant canopy. The fSolar is based on Beer-Lambert’ law 

of light tempering (Ross 2012) and solar radiation capture. However, it does not rely on 

leaf area index. The leaf growth and senescence period obtain from the fSolar are 

calculated as follows: 

 
 

 

Solar = 

𝑓𝑆𝑜𝑙𝑎𝑟_𝑚𝑎𝑥

1 + 𝑒−0.01𝑥(𝑇𝑇−𝐼50𝐴)
 

 
𝑓𝑆𝑜𝑙𝑎𝑟_𝑚𝑎𝑥

1 + 𝑒−0.01𝑥(𝑇𝑇−(𝑇𝑠𝑢𝑚−𝐼50𝐵)
 

 

Leaf growth period (3-6) 

  

Leaf senescence period (3-7) 

 

 

I50A is the required cumulative temperature to enable the leaf area to intercept 

50% of solar radiation in canopy final event, whereas I50B is the accumulation of 

temperature that the crop requires after reaching maturity until the interception of 50% 

radiation during canopy senescence (Zhao et al. 2019). This model, however, has some 

limitations due to its simplicity. For instance, it does not account for fertilization, 

photoperiodicity, and vernalization and the effect of disease on biomass accumulation. 
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The impact of temperature on biomass growth rate (Zhao et al., 2019) is 

calculated as described in the following formula: 

 
 

 

 

f(Temp) = 

0                                            T< Tbase 

 
𝑇−𝑇𝑏𝑎𝑠𝑒

𝑇𝑜𝑝𝑡−𝑇𝑏𝑎𝑠𝑒
                             Tbase≤T<Topt 

 
 
1                                              T≥ Topt 

 (3-8) 

(3-9) 

(3-10) 

 

T is the daily mean temperature, and Tbase and Topt are the base and optimal 

temperature for biomass growth, respectively, for a given crop species. 

The heat stress on biomass production takes the following form: 

 

 

f(heat) = 

1                                               Tmax ≤ Theat 

 

1-    
𝑇𝑚𝑎𝑥−𝑇ℎ𝑒𝑎𝑡

𝑇𝑒𝑥𝑡𝑟𝑒𝑚𝑒−𝑇ℎ𝑒𝑎𝑡
                  Theat  ≤Tmax<Textreme 

 
 
0                                                 Tmax >Textreme 

(3-11) 

(3-12) 
 

(3-13) 

 
  

Where Tmax is the daily maximum temperature, Theat is the temperature limit 

when the biomass growth rate is penalized by heat stress, and Textreme is the extreme 

temperature threshold when the biomass growth rate reaches 0 due to heat stress.  

The water budget subroutine used for the water balance simulation and to define 

water stress without including too much detail on soil characteristics, especially the 

water holding capacity. The impact of water stress is evaluated with the Agricultural 

Reference Index for Drought (ARID) index by the following formula: 
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    f(water) = 1-Swater x ARID    (3-14) 

     
     ARID    = 

1-
min⁡(𝐸𝑇0,0.096∗𝑃𝐴𝑊)

𝐸𝑇0
 

   (3-15) 

 
   

PAW is plant-available water content in the soil profile for the rooting depth, while 

0.096 is a generic daily root water uptake constant (Woli et al., 2012) representing the 

maximum fraction of available water extracted in a day. ET0 is the Priestley-Taylor’s 

reference evapotranspiration. Swater is the sensitivity of RUE to the ARID index. 

(3-16) 
 

Ea :actual evapotranspiration,       Rn: net radiation 

: latent heat of vaporization,        G: soil heat flux 

: psychrometric constant             : model coefficient 

 Dry Beans Growing Season in Haiti 

The growing season is defined in this study as starting on the planting date and 

ending on the day of harvest for a given year. Dry beans take at least 60-70 days to 

reach maturity, especially for the early varieties (Porch et al., 2013). Crop growth 

simulations were conducted using model parameters for the black bean variety 

Salagnac 90’(Dorcinvil et al. 2010), which is the most common variety of black beans in 

Haiti’s mountain areas. The Salagnac 90 dry bean variety was developed and released 

in 1990 by the Salagnac Experimental Station of Haiti and had an indeterminate type III 

growth habit. With the right edaphic and weather conditions, meaning that the soil is not 

P and N deficient and relatively mild weather, the Salagnac 90’ can reach maturity as 

early as 60 days after planting.  

Ea = 𝛼
𝑆

𝑆+𝛾
 (Rn- G)  
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However, the maximum days to reach maturity for this variety is around 70 days 

(Clermont-Dauphin 2003). This variety can yield up to 2500 kg/ha at the optimal 

condition (Clermont-Dauphin 2003). 

In Haiti, there are three major growing seasons for dry beans, and black beans 

variety Salagnac 90 has the most share of the land assigned, accounting for 70% of 

common bean grown (Clermont-Dauphin 2003). The dry black beans are produced from 

April through June and July through September across the country on the mountain 

range, and from November through March in irrigated lowlands. In this study, the 

November season was divided into October-December and January-March. The first 

half consisted of four planting dates starting from October 1st  to October 22nd , while for 

the second half dates were used in the simulation starting from January 1st to February 

12th. All the planting dates are one week apart.  In April, the sowing dates were from 

March 11th  to April 22nd . For the July season, the sowing dates were from June 10th to 

July 22nd . 
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Data Analysis 

The model simulated yields for 37 years and started from 1981 to 2017. An 

analysis of Variance (ANOVA) was performed on both the simulated yields of the model 

and the amount of rainfall during the season, to determine whether there was a 

significant difference in mean across seasons and ENSO phases. The results of the 

ANOVA were further analyzed with the Tukey HSD test to define which planting dates 

showed substantial differences in yield compared under any given ENSO phase. The 

simulated yields were ranked in descending order during each growing season. The 

new sorted datasets were then split into four quartiles, and the probabilities of the 

sowing dates were calculated.  

The first quartile was calculated for low yields; the median-low and median-high 

were for the second and third quartiles. Finally, high yields fell in the fourth quartile. The 

number of times a specific sowing date appears in one of the categories mentioned 

above is counted and divided by the 37 years to calculate the probability. These 

calculations were performed for all years. 
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Figure 3-1.   Experiment site for the case study. The model simulated the yields using 
weather characteristics of that location. 
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Figure 3-2.  Harvested area in hectare for dry beans in Haiti. The areas from white to 
green varied from zero to 6128 ha. The greener the polygons are in this map, 
the denser the beans production is in that area. 
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Figure 3-3.   Monthly average precipitations in millimeters and temperatures in in Port-
au-Prince. This follows the common precipitation trend of the whole country. 

 
 

 
Figure 3-4.  Oceanic Niño Index for the period 1985 to 2010 
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CHAPTER 4 
RESULTS AND DISCUSSION 

 
The results presented in this chapter were obtained from the simulations of the 

SIMPLE model. This model used weather variables such as daily minimum and 

maximum temperature, the solar radiation, and the daily total rainfall to output total 

biomass for each of the growing season and planting dates for dry beans. The yields 

were calculated by multiplying the total biomass by a harvest index. The daily total 

rainfall during each season has undergone analysis of variance to determine the 

significant difference in the means during a typical ENSO phase. Another analysis of 

variance was performed on the simulated yields to determine whether there was a 

considerable difference in the yields during a particular ENSO phase. Lastly, the 

simulated yields were ranked in descending order and according to the planting dates 

and were categorized with the quartiles to calculate the probability of particular planting 

date to fall in a category of yield (low, median, high). 

Anova of Rainfall for All Growing Seasons during ENSO 

The period considered for this analysis spanned from 1981 to 2017. During this 

period, 11 years fell into the category of the neutral ENSO phase, 12 as El Niño and 14 

as La Niña. Among the 12 episodes of El Niño recorded, 3 of them namely 1982,1997 

and 2015 were significant events. As for La Niña, there were five extreme events 

among the 14 episodes,1988,1998,1999, 2007, and 2010. Giannini et al. (2000) 

associated the warm ENSO phase (El Niño) with significantly dry conditions during the 

later Caribbean rainfall season, namely in August through November. However, the 

analysis of variance of the rainfall during the growing season that spanned the sowing 

dates from October 1st to October 22nd  revealed no significant differences between 
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ENSO phases (Figure 4-12). A plausible explanation for that is the decline in the 

intensity of the Caribbean Low-Level Jet (CLLJ) (Schumacher et al. 2011).  

For the sowing dates spanning the period of January 1st to January  12, there 

were 11 episodes of El Niño, among which four were considered very strong 

(1993,1998, 2015, 2016), nine for La Niña with one extreme event (1999) and 17 for 

Neutral. From January 29th to February 12th there were nine El Niño, seven La Niña 

and 21 Neutral. The rainfall was significantly lower during La Niña on January 1st, but 

not during the other planting dates (P-value>0.05) (Figure 4-11). According to Giannini 

et al. (2000) and Torres-Valcarcel (2018), the high intensity of the CLLJ dominated this 

period, which creates drier than normal conditions in late January and February. The 

influence of the CLLJ masked ENSO impact because the sample size for the ANOVA 

was too small. 

During April season, there were nine episodes of El Niño (with five extreme 

events in 1982,1983,1998, 2015, 2016), six La Niña (one intense episode in 1999) and 

22 Neutral for sowing dates of March 11th to March 25th. From April 1st to April 22nd 

there were eight episodes of El Niño, six La Niña and 23 Neutral events. The ANOVA 

indicated that  La Niña rainfalls during the sowing dates of April 15 and 22 were 

significantly lower than the other ENSO phases (P-value<= 0.05) (Figure 4-13) (Giannini 

et al.,2000, Torres-Valcarcel 2018, Schumacher et al., 2011).  

During the season of July, there were nine El Niño events (three were very 

strong,1982,1997, 2015), five La Niña (all of them were strong) and 23 Neutral for 

sowing dates of June 10th to June 24th. From July 1st to July 22nd eight El Niño events 

and nine La Niña were identified. El Niño years were significantly drier than La Niña 
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years, especially on June 24th (P-value <= 0.05) (Figure 4-14). Usually, the July rainfall 

pattern, also known as the mid-summer drought, is typically exacerbated during El Niño 

or La Niña episodes according to Giannini et al. (2000), Schumacher et al. (2011) and 

Torres-Valcarcel (2018). A possible explanation for this is during July the combining 

effect of sea level pressure and the Caribbean Sea surface temperature anomalies 

result in low rainfall (C. Wang, 2007). Due to the small number of El Niño or La Niña 

events identified from 1981 to 2017 for this particular season, there were no significant 

differences in the mean of rainfall during the other planting dates. 

Anova of Simulated Yields for the November Season 

November season accounted for 12% of all the area harvested for dry black 

beans (Salagnac 90) grown in the country, in the lowland under irrigation management. 

However, in some locations in the highlands, farmers still grow dry beans to take 

advantage of the late rain season (August-November). It spans the period from 

November to March of the next year. Due to its length, this season was divided into two 

halves: October to December and January to March. For the first half of this season, 

yields were simulated for four planting dates: October 1st, 8th,15th, 22nd starting from 

1981 to 2017 (Figure 4-3 & 4-4).  

Simulated planting dates were one week apart because weather conditions can 

vary rapidly and have a significant impact on the yield from one week to another. The 

dry beans yield simulation for the October 1st planting date started every time on the 

same date for the whole period of 1981-2017 (37 years). The analysis of variance of the 

simulated yields revealed no statistically significant differences in the yield  

(P-value=0.49) during different ENSO phases. The long-term simulated average 

yield was 2070 kg/ha, with 54% of the yields surpassing that value.  
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The standard deviation from that mean was 253 kg/ha. Therefore the coefficient 

of variation (CV) is 0.12; which means that there was not much variation in simulated 

yields among years. The season that started on October 8th of every year did not differ 

much from the previous one. Although it consisted of the same number of Niño, Niña, 

and Neutral years, the long-term simulated average was 1876 kg/ha, which was not 

significantly different from the season that started on October 1st.  Again, no particular 

ENSO phase was associated with statistically significant differences in the yield (P-

value=0.26). The standard deviation of the yield was 339 kg/ha, which also shows there 

was not much variation among simulated yields (CV=0.18). The long-term simulated 

average yields for October 15th and 22nd were respectively 1614 and 1304 kg/ha. These 

two last planting dates displayed more variation between yields with a coefficient of 

variation 0.25 and 0.30 for October 15th and October 22nd planting dates, respectively. 

Although there was no statistically significant difference in the yields between ENSO 

phases (p-value=0.22) for October 15th and 22nd, a lot more variations in the yields from 

year to year could be seen in comparison to the other two previous planting dates 

(Figure 4-3 to 4-19). Even though there were no significant differences in yield during 

the October season for ENSO years, the long-term average decreased when the 

planting date starts at the beginning of November.  

Anova of Simulated Yields for the January Season 

Farmers growing dry beans during the second half of the long November through 

March season, usually have irrigation. It is almost impossible to grow dry beans in the 

mountainous regions during early January and February due to the dry climate that 

prevails (Torres-Valcarcel 2018, Schumacher et al.,2011). The simulation for planting 

date of January 1st resulted in lower yields when compared to the previous season.  
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The long-term simulated average of the yield was 626 kg/ha and coefficient of 

variation 0.55, which depicted a substantial change from year to year. There were no 

significant differences in the yield across ENSO phases (p-value=0.26) (Figures 4-5 to 

4-6 ). 

Anova of Simulated Yields for the April Season 

Planting carried out during this season shared the 44% of the area harvested for 

dry beans with July season. This season is called  “Spring season” or “Spring 

campaign.” The SIMPLE model was run for seven planting dates with three of them 

starting before April 1st  and three later than this date. The sowing dates for the 

simulations were March 11th, 18th, 25th, April 1st, 8th,15th, 22nd. There were no significant 

differences in the yields between the phases of ENSO and across the sowing dates (P-

value>0.05), notwithstanding a difference from one year to another was noticed (Figure 

4-7 to 4-8). 

Anova of Simulated Yields for the July Season 

This season is the second most prevalent season after April in terms of dry 

beans production in Haiti’s mountainous regions. As rainfall in the summer can be 

highly unpredictable, starting the season early in June was not the right choice (Torres-

Valcàrcel,2018). There were significant differences between simulated yields beginning 

on June 10th through July 22nd for different ENSO phases (P-value=0.05). During this 

season, simulated yields were lower during El Niño (Figure 4-9 to 4-10). 

 

 



 

43 

Yield Probability for All Years during the November Season 

The simulated yields were divided into four quartiles. The first and the fourth 

quartile were respectively denominated as low and high; the second and third quartiles 

were denominated as median-low and median high respectively. The range of the 

simulated yields was 500 to 2700 kg/ha. Therefore simulated yields of 500 to less than 

1000 kg/ha were considered as low yield, whereas 2000 to 2700 kg/ha were deemed to 

be high. These values were overestimated in the model when compared to the average 

actual yield observed in Haiti for dry beans, which is within the range of 600 kg/ha to 

800 kg/ha. A season that started on October 1st had a 51% chance to result in the high 

yield category, and 35 % to be in median-high yield. Whereas, waiting until October 22nd 

to start the season is very risky since there was a 59% chance for the expected yield to 

fall in the low yield category, and a 30% chance to observe a median-low. The chances 

of high yield for that particular planting date were of only 3% (Figure 4-15).   

 
Yield Probability for All Years during the January Season 

The January season had the lowest simulated yields during the study. The 

simulated yields varied from 200 kg/ha to 2000 kg/ha. Therefore, low yields were within 

the range of 100 to 500, and high yields were between 1500 to 2000 kg/ha.  Some 

sowing dates during the period of January to March were less favorable than others in 

terms of expected yields. For instance, January 1st is a risky date to start the season as 

there was a 43% chance to obtain a low yield and 38% to fall in the median low yield 

category. Thus, there was a combined 81% chance of below-median for this season 

when the season started on that particular date. Whereas, when the simulation started 

later, on February 12th, the combined likelihood for above-median yield was of 81% with 
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57% probability to harvest high yield and 24% to be in the median high yield category. 

Consequently, the favorable period to start the season and expect a somewhat high 

probability for higher yield was between January 29 and February 12th (Figure 4-16). 

Yield Probability for All Years during the April Season 

During the April season, simulated yields varied from 500 kg/ha to 3500 kg/ha. 

Low yields were within the range of 500 kg/ha to 800 kg/ha, and high yields were 

between 2000 to 3500 kg/ha. The categorization of simulated yields revealed that 

planting early in April was associated with a low probability of high yield. For instance, 

March 11th and 18th were the riskiest dates to start the season of dry beans. The 

chances of getting a low or median-low yield for March 11th were respectively 49 and 

30%. During March 18th the odds for low yields or median-low yields were 38 and 28 %. 

If instead of starting the season on April 1st as it is customary, farmers wait until April 

22nd, they might improve their odds and expect a 45% probability of high yield, and 

22% probability of median-high yields (Figure 4-17). 

Yield Probability for All Years during the July Season 

The simulated yields varied from 75 kg/ha to 2700 kg/ha. Simulated yields during 

the strong El Niño in 2015 for all the planting dates were Meager. When it comes to 

deciding which sowing dates were riskiest, those that showed a significant response to 

ENSO phases had the highest probability for low and median low-yield. For instance, 

June 10th,17th, 24th  and July 1st  all had a chance greater or equal to 30 % to be in the 

small yield category, and 20% or above to be in the median-low group. Delaying the 

planting dates increased the probability to obtain a higher yield. Even on July 22nd, the 

likelihood for simulated yields to fall in the top category was above 50%. There was also 

a 28% chance for yields to fall in the low-median yield category (Figure 4-18). 
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Limitations of the Study 

All the analyses in this study were conducted using the simulated yields of the 

SIMPLE model. Although the model helped to incorporate the effects of ENSO on the 

dry bean’s yields, especially during the July season, there are several levels of 

uncertainty related to the input data, the model itself, and preset soil and crop 

parameters. Besides, the applicability of the results in Haiti socio-economic paradigm 

issues needs to be addressed to ensure reproducibility of the research. The first angle 

analyzed is the input data for the model. For this study, gridded temperature and solar 

radiation data at a spatial resolution of 0.25o from the CFSR, which roughly covers 27 

km served as inputs for the model. The use of CFSR can pose a problem given Haiti’s 

topography. Within a grid cell of size 27 km by 27 km, minimum temperature can vary 

rapidly as the mountain range tends to be cooler due to a higher elevation. Although a 

better spatial resolution for rainfall was used ( CHIRPS (0.05o)), in a square of 5 km by 5 

km, significant variability can occur in rains due to the ruggedness of the terrain and 

convective rainfall. The lack of actual data from on-site weather stations makes it 

impossible to test the accuracy of the gridded data. 

Furthermore, climate, and especially rainfall, is not stationary (Milly et al., 2005). 

Previous atmospheric conditions do not necessarily; that is another source of 

uncertainty. Moreover, the choice of the ENSO index to associate with the growing 

season can lead to different results (Royce et al. 2011). In this study, the ONI index 

considered the tri-monthly anomalies of sea surface temperature (APPENDIX & Figure 

3-4). Since the simulated growing seasons do not exceed three months, it was 

appropriate to select the ONI index as ENSO phase indicator for this research.  
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The SIMPLE model was calibrated for 14 crops using preset values of 

parameters obtained from the literature (Zhao et al., 2019). As mentioned earlier in 

chapter 3, the SIMPLE model has limitations. It does not consider the effect of 

fertilization (N, P), photoperiodicity, and diseases impact. Therefore, the model can 

significantly overestimate the yield. Besides, in Haiti and especially at the studied 

location (Duvier), the fertility of the soil is questionable since erosion episodes washed 

away a large part of the arable layer. Besides, bean golden mosaic virus (BGMV), rust 

and other fungi and bacterial diseases are ubiquitous in this zone and known to 

decrease the yield every season, especially in the absence of control measures. Other 

potential limitations are related to the water balance equations that the model uses to 

evaluate drought. The first issue pertains to the use of the equation of Priestley-Taylor 

to estimate the evapotranspiration (Sumner & Jacobs, 2005). For the sake of simplicity, 

and because lesser weather variables for calculation, the Priestley-Taylor equation fit in 

this context, but it can underestimate the actual evapotranspiration (Sumner & Jacobs, 

2005). In this region, due to deforestation and slash-and-burn for agriculture, and low 

soil cover, evapotranspiration tends to be high. Other uncertainties are related to the 

use of the agricultural reference index for drought (ARID). ARID is a SIMPLE drought 

index used to evaluate agrarian drought (Woli et al., 2012). Since it uses the Priestley-

Taylor equation for the evapotranspiration, the model might have underestimated the 

water stress impact. Another limitation of the model is that it does not take into 

consideration previous atmospheric conditions and soil moisture before the date the 

simulation starts. Lastly, due to the inexistence of yield records for dry beans in this 

region, the performance of the model could not be adequately evaluated. 
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Regardless of its limitations, the model has proven useful in providing information 

about ENSO impacts on the growing seasons, and also about which planting windows 

are riskiest to start the season for dry beans. Notwithstanding, crop model simulations 

can only help with climate impact. In Haiti socio-economic context, the climate is not the 

only potential limitation to dry beans production. Also, planting recommendations based 

on the model outputs will have to face socio-cultural challenges to be accepted by 

farmers. Haitian farmers are very conservative and traditional about agricultural 

practices. The best way to convince them that the model works is through 

demonstration parcels. The extension agent would have to conduct field experiments 

and show evidence that yield improvements are due to the application of model outputs. 

Aside from climate impacts, farmers in Haiti have to deal with poor seed quality, low soil 

fertility, lack of adapted cultivar, limited access to irrigation water and subsidies or 

microloans. According to Shields ( 2002), the most impoverished farmer would make an 

effort to acquire improved seeds, if they were available on the market, to enhance dry 

beans production. Even though the model effectiveness convinced them, government 

policy would have to be set in motion to help them with the acquisition of improved 

seeds, with irrigation and fertilizers. That way, a significant amelioration in dry beans 

production and a decrease in food insecurity would be expected. Further research that 

would take into consideration all the limitations about data input, stationarity, the model 

core subroutines, and the socio-economic aspect for applicability of findings are advised 

to develop practical tools and help Haitian farmers adapt to climate variability. 
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Figure 4-1.   Monthly precipitation for Duvier in 2018 

 
 

Figure 4-2.   Monthly temperature in Celsius for Duvier in 2018 
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Figure 4-3.   Simulated yields for October/November season during El Niño (1), La Niña 
(3), and Neutral years (2) 
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Figure 4-4.   Anova of the simulated yields during October/November season during El 
Niño (1), La Niña (3), and Neutral years (2) 
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Figure 4-5.   Simulated yields for January season during El Niño (1), La Niña (3), and 
Neutral years (2) 
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Figure 4-6.   Anova for simulated yields for January season during El Niño (1), La Niña 
(3), and Neutral years (2) 
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Figure 4-7.   Simulated yields for April season during El Niño (1), La Niña (3), and 
Neutral years (2) 
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Figure 4-8.   Anova of simulated yields for April season during El Niño (1), La Niña (3), 
and Neutral years (2) 
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Figure 4-9.   Simulated yields for July season during El Niño (1), La Niña (3), and 
Neutral years (2) 
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Figure 4-10.   Anova of the simulated yields for July during El Niño (1), La Niña (3), and 
Neutral years (2) 
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Figure 4-11.   Anova of rainfall during January season for El Niño (1), La Niña (3), and 
Neutral years (2) 
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Figure 4-12.   Anova of rainfall during October/November season for El Niño (1), Neutral 
(2), La Niña (3) phases 
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Figure 4-13.   Anova of rainfall during April season for El Niño (1), La Niña (3), and 
Neutral phases (2) 
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Figure 4-14.   Anova of rainfall during July season for El Niño (1), La Niña (3), and 
Neutral (2) phases 
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Figure 4-15.   Yield Probability per category with respect to planting dates in October/ 
November season  from October 1 to October 22. The probabilities are 
calculated using ranked simulated yields and categorized according to the 
quartiles 

 
 

Figure 4-16.   Yield Probability per category with respect to planting dates in January  
season  from January 1 to February 12 
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Figure 4-17.   Yield Probability per category with respect to planting dates in April from 
March 11 to April 22   

 
 

Figure 4-18.   Yield Probability per category with respect the planting dates in July 
season 
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Figure 4-19.   Intensity of ENSO phases from 1952 to 2018 according to the 
classification of NOAA    
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CHAPTER 5 
CONCLUSION 

 
Crop models are essential tools to capture the impact of climate variability and 

change on farming. They are sometimes an alternative for on-field experiments which 

can be tedious, and cost-ineffective when detecting climate effects over a long period. 

Therefore, with the proper calibration and enough historic data, models can predict with 

an acceptable level of accuracy the yields of crops under different climate scenarios. 

SIMPLE has been calibrated and tested for several plants in the United States but was 

not for Haiti due to a lack of actual historical yield records for dry beans, especially for 

specific growing seasons. Consequently, the performance of the model could not be 

tested against observed yields.  

Moreover, since the model does not take into account the impact of pests and 

diseases and fertilizers intake, it is bound to overestimate crop yield in a given season. 

Nevertheless, it provided valuable insight regarding the response of dry bean yields to 

the ENSO cycle based on the planting dates of a particular growing season. The 

hypothesis, stated at the beginning, that all seasons for dry beans production in Haiti 

are affected by the ENSO cycle was rejected. In fact, among the four seasons, namely 

January, April, July and November, only July showed a significant impact of the phases 

of ENSO on dry bean yield. However, the effect decays when the simulations run during 

later sowing dates. During the other seasons, although there are visible differences 

between simulated yields from one phase to another, they are not statistically 

significant, and it is difficult to know whether it was mere luck. The simulation results 

have revealed that planting early during the July season, during the first three weeks in 

June, would dramatically impact the expected yield. The same scenario is also noticed 
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for January and April, in which simulated yields drop for early planting dates. Whereas, 

planting early during November is much more beneficial as simulated yields are more 

likely to be in the high category. 

These are valuable information that a farmer and decision-makers in Haiti can 

benefit from, given the fact that sowing date is a crucial decision in farming. Knowing 

which season can be affected by ENSO is highly advantageous in developing 

adaptation strategies to cope with climate variability and devise policies that are 

effective and efficient to increase the probability for higher yield over the seasons. 

Moreover, when farmers know ahead of time which sowing window can offer an 

increased likelihood for higher yields, they can decrease chances for low yields and 

increase profits by investing more and optimizing operations during the favorable 

seasons. This study is a first milestone to help farmers in Haiti better strategize their dry 

beans growing seasons. Previous research focused more on the effect of ENSO on 

rainfall in the Caribbean, but not on its impact on crop yields. More research is needed 

on the effects of ENSO  on dry beans, to help foster better agricultural practices, and 

curtail food insecurity. 
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APPENDIX 
 RUNNING 3-MONTH MEAN ONI VALUES 

 

 
 

WE=Weak El Niño, ME=Moderate El Niño, SE=Strong El Niño, VSE=Very Strong El Niño 

WL=Weak La Niña, ML=Moderate La Niña, SL=Strong La Niña 

    

ENSO                               

Type Season JJA JAS ASO SON OND NDJ DJF JFM FMA MAM AMJ MJJ 

  1981 - 1982 -0.3 -0.2 -0.2 -0.4 -0.6 -0.8 -0.8 -0.5 -0.2 0.2 0.4 0.6 

VSE 1982 - 1983 0.8 1.1 1.6 1.2 1.0 0.8 0.5 0.4 0.3 0.3 0.2 0.0 

WL 1983 - 1984 0.3 -0.1 -0.5 0.1 0.0 0.1 0.4 0.6 0.6 0.7 0.8 0.8 

WL 1984 - 1985 -0.3 -0.2 -0.2 0.8 0.8 0.8 0.8 0.5 0.0 -0.4 -0.5 -0.5 

  1985 - 1986 -0.5 -0.5 -0.4 -0.8 -0.7 -0.7 -0.7 -0.6 -0.7 -0.8 -0.8 -0.7 

ME 1986 - 1987 0.2 0.4 0.7 -1.4 -1.7 -1.5 -1.1 -0.8 -0.6 -0.5 -0.5 -0.5 

SE 1987 - 1988 1.5 1.7 1.6 -0.4 -0.4 -0.4 -0.2 0.1 0.4 0.7 0.9 1.1 

SL 1988 - 1989 -1.3 -1.1 -1.2 1.4 1.5 1.7 1.8 1.7 1.3 0.9 0.7 0.6 

  1989 - 1990 -0.3 -0.3 -0.2 0.4 0.5 0.6 0.6 0.6 0.5 0.3 0.2 -0.1 

  1990 - 1991 0.3 0.4 0.4 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 

SE 1991 - 1992 0.7 0.6 0.6 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.3 

  1992 - 1993 0.4 0.1 -0.1 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.2 

  1993 - 1994 0.3 0.3 0.2 -0.2 -0.3 -0.4 -0.4 -0.2 0.2 0.3 0.3 0.5 

ME 1994 - 1995 0.4 0.4 0.6 1.3 1.4 1.3 1.1 0.6 0.1 -0.3 -0.6 -0.6 

ML 1995 - 1996 -0.2 -0.5 -0.8 -0.8 -0.8 -0.8 -0.6 -0.3 -0.1 0.2 0.5 0.8 

  1996 - 1997 -0.3 -0.3 -0.4 2.0 2.0 1.7 1.4 1.2 1.0 0.7 0.4 0.2 

VSE 1997 - 1998 1.6 1.9 2.1 -0.1 -0.2 -0.3 -0.4 -0.5 -0.5 -0.4 -0.2 0.0 

SL 1998 - 1999 -0.8 -1.1 -1.3 -0.4 -0.3 -0.4 -0.6 -0.7 -0.6 -0.4 0.0 0.3 

SL 1999 - 2000 -1.1 -1.1 -1.2 0.5 0.7 1.0 1.1 1.1 0.9 0.8 0.6 0.4 

WL 2000 - 2001 -0.6 -0.5 -0.5 0.9 0.8 0.6 0.5 0.3 0.3 0.2 0.0 -0.3 

  2001 - 2002 -0.1 -0.1 -0.2 -0.7 -0.9 -1.1 -1.4 -1.4 -1.1 -0.8 -0.7 -0.7 

ME 2002 - 2003 0.8 0.9 1.0 -0.9 -1.0 -0.9 -0.7 -0.4 0.1 0.4 0.7 0.9 

  2003 - 2004 0.1 0.2 0.3 1.8 2.1 2.1 1.8 1.2 0.5 -0.1 -0.5 -0.9 

WE 2004 - 2005 0.5 0.6 0.7 -1.7 -1.9 -2.0 -1.8 -1.6 -1.2 -1.0 -0.9 -0.8 

WL 2005 - 2006 -0.1 -0.1 -0.1 -0.6 -0.8 -0.6 -0.5 -0.6 -0.7 -0.7 -0.8 -1.0 

WE 2006 - 2007 0.1 0.3 0.5 -1.4 -1.6 -1.7 -1.6 -1.2 -0.7 -0.5 -0.3 0.0 

SL 2007 - 2008 -0.5 -0.8 -1.1 0.8 0.9 0.8 0.7 0.6 0.3 0.2 0.2 0.3 

WL 2008 - 2009 -0.4 -0.3 -0.3 0.7 0.8 0.8 0.7 0.4 0.1 -0.2 -0.3 -0.3 

ME 2009 - 2010 0.5 0.5 0.7 -0.3 -0.1 0.0 0.0 0.1 0.2 0.3 0.2 0.0 

SL 2010 - 2011 -1.0 -1.4 -1.6 0.5 0.5 0.6 0.6 0.5 0.3 0.4 0.5 0.5 

ML 2011 - 2012 -0.5 -0.7 -0.9 0.0 0.1 0.0 -0.3 -0.5 -0.5 -0.4 -0.3 -0.3 

  2012 - 2013 0.3 0.3 0.3 -0.1 -0.2 -0.1 0.0 0.1 0.2 0.5 0.7 0.7 

  2013 - 2014 -0.4 -0.4 -0.3 2.0 2.2 2.2 2.2 1.9 1.5 1.3 1.1 0.7 

WE 2014 - 2015 0.1 0.0 0.2 -0.8 -1.0 -0.9 -0.6 -0.4 -0.3 -0.4 -0.5 -0.4 

VSE 2015 - 2016 1.5 1.8 2.1 -0.6 -0.9 -1.1 -1.0 -0.8 -0.8 -0.8 -0.8 -0.6 

WL 2016 - 2017 -0.3 -0.6 -0.7 -0.3 -0.3 -0.4 -0.5 -0.5 -0.3 -0.2 -0.1 0.0 

WL 2017 - 2018 0.2 -0.1 -0.4 0.9 1.1 1.2 1.2 1.2 1.1 0.9 1.0 1.2 

WE 2018 - 2019 0.1 0.2 0.4 1.5 1.3 1.1 0.8 0.5 0.1 -0.3 -0.9 -1.3 
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