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High-throughput phenotyping remains costly and inaccessible to most plant 

breeding programs. Over the last decade, genomic selection (GS) has gained 

momentum as a tool for predicting genetic gain in plant breeding populations, while 

lowering costs associated with phenotyping. Different statistical models and approaches 

have been developed to implement GS in plant breeding, and strategies that promote 

accurate and resource-efficient prediction are of increasing interest. Since its 

establishment in 2010, the sweet sorghum breeding program at CHIBAS, Haiti, has led 

efforts to develop and release cultivars resilient to abiotic and biotic stress. Among 

abiotic constraints, drought stress is the most limiting since growers depend on erratic 

rainfall for sorghum production in Haiti. The goal of the present study was to predict the 

genomic estimated breeding values of a sweet sorghum breeding population (n=250) 

under contrasting environments in Haiti using four statistical models (Bayes A, B, C and 

Bayesian Ridge Regression (BRR)). We evaluated twelve sorghum traits and performed 

within and across irrigated, pre-flowering and vegetative water stress prediction 

scenarios. Overall, the four methods showed similar results, however Bayes B and BRR 
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were superior in prediction accuracy and computation time, respectively. Generally, 

prediction accuracy was higher for within-environment (0.31 to 0.7) than across-

environment (0.06 to 0.7) involving vegetative water stress scenarios. Prediction 

accuracy varied substantially for all traits, with total green leaf showing the highest 

mean value (0.70), and grain yield showing the least (0.49). Overall, there was no 

improvement in the prediction accuracy of grain yield with multi-traits genomic selection. 
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CHAPTER 1 
INTRODUCTION 

The predicted explosion in human population over the next few decades will 

place immense pressure on world food supply, as well as deplete already dwindling 

petroleum reserves. This challenge, coupled with global warming and food-fuel 

competition, requires innovation and development of high-yielding well adapted crops, 

particularly dual-purpose crops that can be used for both food and fuel. One such crop 

is sweet sorghum (Sorghum bicolor (L.) Moench). Sweet sorghum is a source of grain 

and stem for sugar, alcohol, syrup, jaggery, fodder, fuel, bedding, roofing, fencing, 

paper and chewing (Ratnavathi et al. 2011). In Haiti, sweet sorghum is mainly cultivated 

for its grains. However, there is a growing interest among growers for multipurpose 

varieties that can be used to diversify household income, particularly in the rural areas 

(Leclerc et al. 2014). The sorghum grains are used for human alimentation and 

beverage production such as Maltha-H and Kinanm (a Haitian beer). Sorghum is the 

third most important cereal (100,000 tons) in Haiti, after maize (205,000 tons) and rice 

(145,000 tons) (FAO and PAM 2017). The Centre department (31,340 ha) leads in 

production of sorghum in Haiti, followed by Artibonite (30,596 ha) and South department 

(19,729 ha) (William 2016). 

Due to its environmental resilience, sorghum is an important crop for ensuring 

world food security, especially in developing nations such as Haiti. Unlike other 

bioenergy/ food crops such as sugarcane (Saccharum spp.), corn (Zea mays), sugar 

beet (Beta vulgaris), wheat (Triticum aestivum), cassava (Manihot esculenta) and potato 

(Solanum tuberosum), sorghum is well adapted to marginalized arid and semiarid 

regions due to its high water, radiation and nutrient use efficiency (Mathur et al. 2017). 
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However, tolerance to different environmental conditions varies by genotype, thus 

specific cultivars do well in one environment and not the other. In a country like Haiti 

with variable agro-ecological zones (low land to high lands), it is paramount to develop 

varieties with wide adaptability. However, conventional breeding for new superior 

varieties is time-consuming and expensive, often requiring decades of phenotyping and 

selection. Nevertheless, with contemporary breeding tools such as genomic selection, 

crop-breeding cycles can be significantly reduced, and genetic gains improved each 

cycle. The goal of the current project was to use genomic selection as a tool for 

predicting agronomic performance of a breeding population under drought and irrigated 

conditions in Haiti.  

Statement of the Problem 

Drought is a major limiting factor in agriculture and is considered the most 

important cause of yield reduction in crop plants (Boyer 1982; Tuberosa et al. 2003). 

Agriculture in Haiti is rainfall dependent, which makes water availability (quantity and 

distribution) unpredictable across seasons. The result is sometimes unusually long 

periods of drought, frequent floods and pest infestation, leading to catastrophic crop 

losses (CNSA 2012). Climate change has not helped, with erratic, intense, early rains, 

and prolonged drought periods. For example, the 2017 spring cropping season 

experienced insufficient and poorly distributed rainfall, which led to 18% reduction in 

sorghum production, 15% for maize and 6% for legumes (FAO and PAM 2017), thus 

highlighting the need to develop more drought-tolerant sorghum varieties. Although 

sorghum is both a drought and heat resistant plant (Nasidi et al. 2010), the level of 

tolerance is genotype dependent (Assefa et al. 2010). Given the economic importance 

of sorghum in Haiti, there is a clear and urgent need to develop high-yielding and 
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drought-tolerant sorghum cultivars widely adapted to various agro-ecological zones in 

Haiti.  

Significance of the Study 

Sweet sorghum is the third most important cereal in Haiti (Leclerc et al. 2014). It 

is mainly cultivated for its grain, which is used as food and for production of alcoholic 

beverages. Due to its agronomic and economic importance in the country, breeding 

efforts to alleviate production challenges (biotic and abiotic) were initiated in 2010 at 

CHIBAS, Haiti. Through this initiative, several superior sweet sorghum varieties have 

been released to growers. However, given the variation in agro-ecological zones and 

erratic rainfall patterns in the country, there is still need for new varieties adapted to 

harsh environments, particularly marginal semi-arid regions.  

Traditional breeding for drought tolerance at CHIBAS is resource intensive and 

expensive due to long selection process and heavy labor requirement for phenotyping. 

Moreover, breeding for drought tolerance is known to be challenging for breeders 

regardless of many decades of research, as most of drought tolerance-related traits are 

polygenic (Kidanemaryam 2019; Zhang et al. 2015).The overarching goal of the 

breeding program is to integrate modern plant breeding tools to; 1) expedite varietal 

development and release through improved selection efficiency, and 2) reduce 

phenotyping costs. Due to its relatively small genome size (700 Mb) and short life cycle, 

sorghum is a model for other complex grass cereals and a target for genomics-assisted 

breeding (Bekele et al. 2013). Genomic selection is a process where large numbers of 

molecular markers (mostly SNPs) across the genome are used to estimate genetic 

variance for a given trait in a population, as opposed to focusing on a single 

Quantitative trait locus (Brown et al. 2014). Genomic selection integrates all genetic 
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effects (both large and small-effect QTL) into genomic estimated breeding values 

(GEBV), which is a representation of the genetic value of individuals (Stich and 

Inghelandt 2018; Windhausen et al. 2012; Desta and Ortiz 2014; Heffner et al. 2009). 

Using genomic selection in breeding can have many advantages including reduction in 

phenotyping cost and early generation plant selection. As genotyping costs continue to 

decrease, genomic selection will allow increased selection intensity, and therefore 

efficient utilization of available genetic resources (Biochard et al. 2016). However, the 

selection of stable lines can be challenging due to the presence of 

genotype × environment (G × E) interactions that can negatively affect the heritability of 

the traits and response to selection (Roorkiwal et al. 2018). Heritability of a trait, which 

is the proportion of total phenotypic variation that is due to genetic variation, is 

influenced by environmental factors, particularly for quantitative traits (Visscher et al. 

2008). Thus, the performance of a group of lines can change from one environment to 

another. Hence accounting and modeling for G × E interaction in genomic prediction 

models could help breeders select multiple traits in the same or different environment at 

the same time. 

Using a breeding population with genotypic and phenotypic data, the goal of the 

current project was to evaluate four statistical models for the estimation of GEBVs of 

250 genotypes under drought and irrigated conditions in Haiti. Through this project, 

improved multipurpose sweet sorghum varieties (grain, feed, alcoholic beverage) will be 

released for the sub-humid and drought prone environments. Moreover, the current 

research project will allow the identification of the best scenario for implementation of 

genomic selection in sweet sorghum breeding in Haiti. 
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Objectives of the Study 

The current project aimed to estimate the prediction accuracy of twelve sorghum 

traits within and across different environments (irrigation and water stress) using four 

different prediction models. 

The following are the specific objectives:   

1. Phenotypically characterize a sweet sorghum breeding population (n=250) for 
agronomic performance across drought and irrigated environments 
 

2. Determine the best prediction model for an accurate prediction within 
environment  
 

3. Estimate the prediction accuracy of the twelve sorghum traits within and across 
environments 

 
Hypotheses 

Hypothesis 1: Predictive accuracy within environments will be higher than across 
environments  
 

Hypothesis 2: Variation in prediction accuracy among the models will be marginal but 
substantial among the traits 
 

Hypothesis 3: The prediction accuracy of grain yield can be improved when a 
genetically correlated indicator trait with higher heritability is considered within 
the genomic prediction model. 
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CHAPTER 2 
LITERATURE REVIEW 

Environmental Adaptation 

Sweet sorghum (Sorghum bicolor (L.) Moench) is a C4 plant that belongs to the 

Poaceae family, which, in addition to grains for human and animal consumption, also 

accumulate high level of sugars in its stems, usable for many products including syrup, 

rum (in Haiti) and bioethanol. It is a low water-demanding plant (about 400 to 700 mm of 

rain) (House 1987). Sorghum converts CO2 into sugars efficiently, has high nitrogen and 

solar radiation use efficiency, short growth cycle (3-4 months), high drought tolerance 

(will survive with less than 300 mm of water), salinity and alkalinity tolerance (Tari et al. 

2012; House 1987; Assefa et al. 2010).  

Nutrition and Use 

Sweet sorghum is a multipurpose crop. The juice extracted from its stems serves 

as raw material for syrup, jaggery and bio-ethanol production (Figure 2-1). Moreover, 

the bagasse, which is a byproduct of stem juice extraction, is a source of energy and 

organic fertilizer (Mathur et al. 2017). Sweet sorghum, which has significant sugar 

content in the stems, is closely related to sugarcane and is widely cultivated in some 

countries as a complementary crop to sugarcane for bioethanol production, as it has a 

shorter life cycle compared to sugarcane (Reddy et al. 2005; Burks et al. 2013). 

Although it is generally considered as an annual grass, sorghum is grown as a perennial 

crop and harvested several times a year in the tropics, to prevent soil degradation (Cox 

et al. 2010). The grain of sweet sorghum is also an important source of nutrients whose 

value relative to that of other major cereals is summarized in Table 2-1. It is naturally 

gluten free (safe for people with gluten intolerance), and contains significant level of 
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antioxidants, which help fight against cancer, diabetes, heart and neurological diseases 

(De Morais Cardoso et al. 2015; Shen et al. 2018). However, it is not recommended to 

consume freshly germinated sorghum because of the presence of significant amounts 

of dhurrin, a cyanogenic glycoside. The hydrolysis of this compound produces a 

powerful toxin: prussic acid or cyanogenic acid (HCN), which is known as a poison for 

human and animals (Panasiuk and Bills 1984). Sorghum grain can be consumed in a 

variety of forms that vary from region to region. In general, it is consumed as whole 

grain or processed into flour, from which traditional meals are prepared (Shen et al. 

2018). These meals include flat bread, mostly unleavened and prepared from fermented 

or unfermented dough in Asia and parts of Africa, thin or thick fermented or 

unfermented porridge, mainly consumed in Africa, boiled products similar to those 

prepared from maize grits or rice and preparations deep-fried in oil (Léder 2004). 

Another important utilization of sorghum, especially in Africa and now in Haiti, is for 

nutritional and alcoholic beverage preparation. For example, in Haiti the sorghum grain 

is used in the production of Malta H, a nutritional beverage, and beer. 

Sorghum Production in Haiti 

Many sorghum varieties are grown in Haiti. Sorghum production in Haiti used to 

be dominated by Guinea grain varieties in marginal areas; but these have since 

disappeared because of sugarcane aphid (Melanaphis sacchari) proliferation. Currently, 

most varieties grown in Haiti were released by the breeding program at CHIBAS and 

have moderate to high levels of total soluble solids (14 to 17 °Brix). Currently, the most 

commonly cultivated variety is Papèpichon, a sugarcane aphid resistant variety 

released by CHIBAS. Before the proliferation of sugarcane aphid in 2015, Papèsèk 

used to be the most common varieties adopted by the Haitian farmers but has 
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disappeared. Papèsèk is a dual-use variety (forage and grain) from Central American 

breeding programs. It is a stay-green variety, very tolerant to drought and close to a 

yield of 4.4 tons ha-1. Papèsèk has soluble solids concentration close to 16 °Brix 

(Leclerc et la. 2014). Another well-known variety is Dekabès. While released by 

CHIBAS as a sweet sorghum variety that gives excellent rum, Dekabès has never been 

adopted because its grain is too floury (floury endosperm while farmers/consumers 

require a vitreous/corneous endosperm). Although it has comparable yield (3 tons ha-1) 

to Papèsèk, it is more sensitive to water stress. Dekabès stems contain more sugar 

than those of Papèsèk and can be used to produce syrup and rum (Leclerc et al. 2014).  

Dekabès is also a stay-green and sugarcane aphid resistant line. These two varieties 

have been used by the plant breeding program from CHIBAS to create new varieties 

combining high yield, high stem sugar levels, drought tolerance and insect resistance. 

Although Centre department (31,340 ha), Artibonite (30,596 ha) and South (19,729 ha) 

are the biggest producers, other regions such as West (19,560 ha), Nippes (12,049 ha), 

North West (6,400 ha), South East (6 ,135 ha), North (1,571 ha) and North East (431 

ha) have modest sorghum production (William 2016). About 300,000 farmers rely on 

this crop as a source of food and income (Flecher 2016; Gabriel 2016). Two different 

types of sorghum are grown in Haiti: photoperiodic (the local variety) and non-

photoperiodic (improved variety). The photoperiodic and non-photoperiodic sorghum 

differ in cycle duration, which depends on day length and planting date. The non-

photoperiodic varieties flower rapidly, regardless of day length, while the cycle duration 

of photoperiod sensitive varieties change depending on day length and the sowing date 

(Wolabu and Tadege 2016). The local variety is widely cultivated in areas receiving 
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about 400 and 800 mm of rainfall per year (William 2016) (Figure 2-2). The 

photoperiodic sorghum is planted during June or July and can have a grain yield of 

about 0.8 tons ha-1 without any inputs.  In contrast, the non-photoperiodic variety is 

planted all year long and can have a combined yield of 10 tons ha-1 over three harvests 

(William 2016).  

Breeding Goals for Sorghum 

Generally, sweet sorghum breeding targets improvement of grain and/or fodder 

yield, reduced maturity, enhanced nutrition (micronutrients and low HCN level) (Pineli et 

al. 2015; Dahir et al. 2015), and tolerance to abiotic factors (e.g. drought and salinity), 

diseases, e.g. blight, downy mildew, rust, smut, anthracnose and charcoal rot (Cassady 

et al. 1962; Erpelding 2010; Mofokeng et al. 2017) and insect-pests (e.g. sugarcane 

aphid (Melanaphis sacchari), sorghum midge (Contarinia sorghicola), sugarcane 

(Diatraea saccharalis) and corn borers (Ostrinia nubilalis), stem borer (Chilo partellus) 

and shoot fly (Atherigona soccata) (Sharma et al. 1993). These goals can be achieved 

using conventional breeding methods (e.g. pedigree method, pure line selection, back 

cross breeding, and mass selection) (Chaurasla 2015; Vaksmann et al. 2008, Piper and 

Kulakow 1994) or modern breeding methods such as genomic selection (Fernandes et 

al. 2018; Oliveira et al. 2018), marker-assisted selection (MAS) (Murray et al. 2009; 

Olweny et al. 2012), or transgenic approaches (Che et al. 2018, Jiang et al. 2013). 

Biotic Factors Affecting Worldwide Sorghum Production 

Biotic factors cause significant annual crop losses in the world. Economically 

important foliar diseases affecting sweet sorghum production include anthracnose 

(caused by Colletotrichum sublineola), leaf blight (caused by Exserohilum turcicu), sooty 

stripe (caused by Ramulispora sorgi), bacterial leaf strip (caused by Burkholderia 
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andropogonis), head smut (caused by Sporisorium reilianum), rust (caused by Puccinia 

purpurea), sorghum coal (caused by Sphacellotheca sorghi) and downy mildew (caused 

by Peronosclerospora sorghi) (Bonnet et al. 2012; White et al. 2011). Fungal rots 

caused by Fusarium sp. (Fusarium root rot) and Macrophomina phaseolina (charcoal 

rot) are the most common. Economically significant viral diseases include maize dwarf 

mosaic and sugarcane mosaic. 

Insect pests affecting sweet sorghum production include sugarcane aphid 

(Melanaphis sacchari), chewing caterpillars (Spodoptera frugiperda), and sorghum 

midge (Stenodiplosis sorghicola or Contarinia sorghicola). Bird pests also cause 

devastating damage to crop throughout the growing season. However, most significant 

damage is typically observed during early flowering and late flowering. The most 

prevalent bird pests in sorghum include weavers (Ploceus cucullatus), parrots (Aratinga 

sp.), sparrows (Passer sp.), quelea (Quelea quelea), crows (Corvus sp.), blue-black 

grassquit (Volatina jacarina), pigeons (Patagioena spicazuro), and doves (Columbina 

talpacoti) (Priyavratha and Nakasimha, 1953; Melo and Cheschini, 2012).  

Abiotic Factors Affecting Worldwide Sorghum Production 

Nutrient deficiency, high salinity, aluminum toxicity, waterlogging, temperature 

stress and drought are the most important abiotic stresses limiting sorghum production 

around the world (Tari et al. 2012).  These factors generally result in combined yield 

losses of up to 1 ton ha-1 (Rao 2004).  

The key elements for sorghum nutrition are: nitrogen, phosphorous, potassium, 

and zinc (Erickson et al. 2012; Singh et al. 2012; Wortmann et al. 2013; Adams et al. 

2015). Nitrogen is a major nutrient for all crops and its deficiency is a major constraint to 

sorghum production globally. Economic losses due to nitrogen deficiency depend on the 
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growth stage of the plant. In sorghum, losses are most significant during anthesis where 

between 16 to 30% of florets can abort (Rao 2004). Phosphorous is most likely the 

second nutrient essential for sorghum production optimization (Wortmann et al. 2013).  

Few symptoms are clearly recognizable with mild phosphorous deficiency, except for 

lack of vigor, thin plants with late flowering. When severe phosphorous deficiency 

occurs, it slows the plant growth and dark red to purple overtones develop on the 

surface of older leaves (Grundon et al. 1987). Similar to phosphorous deficiency, plants 

with potassium deficiency show a lack of vigor and late flowering. When this deficiency 

is severe, it induces dwarfism in plants with the older leaves showing marginal necrosis. 

However, the necrosis development pattern differs greatly among cultivars (Grundon et 

al. 1987). Zinc is a vital element for the optimization of sorghum production. Zinc 

deficiency inhibits nitrogen uptake and utilization, which reduces sorghum yields and 

lowers plant biomass (Roberson 2013).  

Sorghum is considered to have moderate tolerance to salt stress (Azhar and 

McNeilly 1987). Salt stress can result from high concentrations of minerals and toxic 

ions, which can decrease the percentage of germination or increase the duration of 

germination in sweet sorghum (Tari et al. 2012).  

Aluminum toxicity is major challenge for sorghum production, especially in soils 

with low pH (Tari et al. 2012; Magalhaes et al. 2007).  To cope with aluminum toxicity, 

sorghum plants use an exclusion mechanism, chelation of the metal ion by organic 

acids in the rhizosphere. In 2007, a gene that plays a key role in aluminum toxicity 

tolerance in sorghum was identified and belongs to the multidrug and toxic compound 
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extrusion (MATE) family, an aluminum- activated citrate transporter (Magalhaes et al. 

2007).  

Waterlogging conditions occur as a result of flooding, especially in soils with poor 

drainage. The frequency of storms and heavy rain in the tropical and sub-tropical 

regions create a waterlogging environment that can impact plant metabolism and 

negatively affect the soil texture. The effects of waterlogging depend on the age of the 

plant; however, after 30 days of plant growth, shoot growth is not significantly affected. 

To cope with waterlogging, sorghum plants develop new nodal roots and form 

aerenchyma from the roots to the stalks (Tari et al. 2012).  

Extreme temperatures (high and low) are limiting factors to sorghum production 

and are related to planting dates (Tari et al. 2012). A late planting can negatively affect 

the stem sugar content and biomass yield (Erickson et al. 2011), specifically in arid 

environments (Almodares and Mostafi Darany 2006). Sweet sorghum is highly sensitive 

to low temperature, which can inhibit seed germination (soil temperature below 10 °C), 

seedling emergence and overall plant growth (Tari et al. 2012). On the other hand, high 

temperature can repress biomass production and sugar yield (Tari et al. 2012). 

Although sorghum is well adapted to heat stress, this adaptation is genotype dependent 

(Tack et al. 2017). The temperature threshold beyond which sorghum yields starts to 

decline is about 33 oC (Tack et al. 2017). 

Water stress is a major limiting factor in agriculture and is considered the most 

important cause of yield reduction in crop plants especially cereals (Boyer 1982; 

Tuberosa et al. 2003). Water is an essential element for perpetuation of both animal and 

plant life. Water represents almost 90% of the plant body on a fresh-weight basis and 
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performs several vital functions during plant growth, nutrition, seed germination, 

photosynthesis, multiplication of soil organisms and acts as a solvent for nutrient 

absorption from the soil. Therefore, the ability of plants to resist water stress is 

economically important. Depending on their response to water availability, plants can be 

classified as mesophytes (adapted to moderate supply of water), hydrophytes (require 

water-logged habitat) and xerophytes (tolerate dry conditions). Even though sorghum is 

considered as a drought tolerant plant compared to other major crops (Table 2-2), it is 

still susceptible to water stress in a genotype dependent manner. According to a study 

conducted by Miller and Ottman (2010), water stress can negatively affect radiation 

interception, leaf-number, plant height and grain yield. Studies conducted by the sweet 

sorghum breeding team at CHIBAS show that all sweet sorghum varieties currently 

under development are sensitive to drought, each at a different level. Some varieties 

have significantly reduced yield in contrasting environments (irrigated vs water stress), 

while others show stable yield across the environments. However, across varietal types, 

water stress does not negatively affect the concentration of total soluble solids. There 

are three adaptive mechanisms that a sorghum plant uses to cope with drought stress: 

drought escape (early maturity, leaf rolling, and remobilization of stem reserves), 

drought avoidance (adjustment of leaf area, increasing root systems) and drought 

tolerance where adapted cultivar usually exhibits light green and erect leaves (Rao 

2004). Drought tolerance indices such as mean productivity, stability tolerance index, 

harmonic mean, yield stability index, tolerance index, and stress susceptibility index can 

be estimated to select superior genotypes under drought and irrigated conditions 

(Menezes et al. 2014).  
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Stay-green Trait in Sorghum 

An important drought adaptation mechanism in sorghum is the stay-green trait. 

Stay-green trait is characterized by impaired or delayed chlorophyll degradation 

pathways. Quantitative traits loci (QTLs) associated with stay-green traits are routinely 

targeted in sorghum breeding programs to improve crop tolerance to stress and 

eventually increase plant biomass and grain yield (Borrell et al. 2014; Meru 2010; 

Thomas and Ougham 2014). In sorghum, functional stay-green is physiologically and 

genetically complex, resulting in a multitude of expression patterns and environmental 

effects that depends on genotype origin (Thomas and Howarth 2000; Thomas and 

Ougham 2014). Many sorghum varieties have leaves that senesce after grain maturity 

under normal field conditions. However, some genotypes remain green while containing 

greater stem carbohydrates and higher grain weight (Thomas and Howarth 2000; 

Duncan et al. 1981). Two well-known sources of stay-green for sorghum are B35 and 

E36-1 (Thomas and Howarth 2000; Thomas and Ougham 2014). B35 is derived from 

Ethiopian Durra and Nigerian Landraces and is widely used in genetic studies and 

breeding programs (Meru 2010; Thomas and Ougham 2014). Genetic mapping studies 

in populations derived from crosses with B35 have allowed the identification of four 

major stay-green QTLs (Stg2, Stg1, Stg3, and Stg4). Those QTLs are responsible for 

up to 54% of phenotypic variance. Stg2 and Stg1 are located on chromosome 3, Stg3 

on chromosome 2 and Stg4 on chromosome 5 (Kim et al. 2005; Xu et al. 2000). E36-1 

is derived from Ethiopian zera-zera germplasm which is also a source of sorghum 

resistance to sugarcane aphid (Thomas and Ougham 2014). Stay-green QTLs have 

been found to play an important role in reducing tillering and the size of upper leaves, 

which eventually reduces leaf transpiration and enhance grain yield under drought 
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(Borrell et al. 2014). The positive correlation between grain yield and green leaf area at 

maturity (GLAM) indicates the important contribution of stay-green to grain yield under 

post-anthesis drought (Borrell et al. 2000). A study conducted by Borrell and Hammer 

(2000) demonstrated that sorghum hybrids having the stay-green trait are 

photosynthetically superior compared to hybrids without the trait. Consequently, tandem 

selection for enhanced grain yield and stay-green is important for environments with 

post-anthesis drought (Borrell et al. 2014). Furthermore, stay-green appears to increase 

lodging resistance and disease resistance in sorghum hybrids (Borrell et al. 2000). 

Relationship between Grain Yield and Stem Sugar in Sorghum 

Little is known about the molecular mechanisms underlying the relationship 

between grain yield and stem sugar in sweet sorghum (Murray et al. 2009). 

Observations in some sweet sorghum germplasm having high biomass/ grain yield but 

low stem sugar indicate possible trade-off/ negative correlation between the two traits 

(Makanda et al. 2011; Mathur et al. 2017; Murray et al. 2008; Erickson et al. 2012; 

Nebie et al. 2013). However, this relationship may be genotype dependent (Gutjahr et 

al. 2013a; Gutjahr et al. 2013b). Murray et al. (2008) showed colocalization of plant 

height, grain yield and stem sugar in sweet sorghum, and were able to tandemly 

improve grain yield and stem sugar in the population. In addition, the sweet sorghum 

breeding program at CHIBAS has succeeded in creating new high yielding (> 4Tons ha-

1) with high stem sugar content (>16 °Brix). Of importance is that the negative 

correlation between gain yield was more pronounced among family selections (only 5 F3 

families selected out of 125) than for recurrent selection (18 S2 families selected out of 

160), leading to the conclusion that the trade-off between grain yield and soluble solids 

concentration may be genotype dependent. Bernal et al. (2014) demonstrated that 
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sugar accumulation can be the result of genotype X environment interaction, while Miller 

and Ottoman (2010) showed that water stress reduced plant height and grain yield (due 

to decreased interception of solar radiation) in sweet sorghum but had no effect on stem 

sugar content (Gutjahr et al. 2013a).  

Conventional and Molecular Breeding Approaches in Crops 

Plant breeding is a process that aims to improve desirable traits in a crop species 

by manipulating the genetic factors governing that trait (Brown et al. 2014). This practice 

started about 10,000 years ago with the domestication of plants by humans, which led 

to the birth of agriculture. During this period, farmers selected plants with more grain 

thus accumulating yield alleles each successive generation. However, this process was 

limited by G x E interaction and the resulting selections were not uniform/ consistent. 

However, in the 19th century, following the theory of evolution by Charles Darwin and 

the laws of inheritance and chromosome segregation by Gregor Mendel, scientists used 

their understanding of genes to generate hybrids with complementary characteristics. 

These two big discoveries are the foundation for today’s modern genetics. Genetic 

markers are DNA sequences with specific location on a chromosome associated with 

variations in observed traits (Raza et al. 2016). Over the last two decades, 

advancements in DNA sequencing technology has accelerated marker discovery and 

facilitated their application in plant breeding for DNA finger printing, genetic diversity, 

QTL/ fine mapping, marker-assisted selection (MAS), genome-wide association studies 

(GWAS) and genomic selection. MAS has been widely applied in plant breeding for 

improvement of simple monogenic traits which are controlled by few major genes. 

However, MAS is inefficient for improvement of quantitative traits which are controlled 

by many small-effect genes. In addition, some QTLs are population-specific, thus 
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limiting the application of MAS across breeding populations of different genetic 

backgrounds.  Unlike MAS, GS simultaneously estimates marker effects across the 

entire genome and calculates the GEBVs for individual plants (Meuwissen et al. 2001). 

Genomic selection uses dense molecular markers across the genome, combined with 

phenotypic data, to predict breeding values of individuals with genotypic data, but not 

phenotypic data. This method allows efficient selection for quantitative traits, while 

shortening the breeding cycle and reducing phenotyping costs (Picard 2015). Genomic 

selection has been successfully applied to improve quantitative traits such as yield and 

disease resistance in major crops such as wheat, maize, rice and barley (Bassi et al. 

2016; Grenier et al. 2016; Guzman et al. 2016; Heslot et al. 2012; Ornella et al. 2017; 

Spindel et al. 2015; Song et al. 2017; Spindel and Iwata 2018). Genomic selection in 

sweet sorghum can be beneficial for improvement of quantitative traits such as yield 

and drought tolerance. However, application of GS for sweet sorghum improvement is 

nascent, compared to other cereal crops such as rice, maize and wheat (Kulwal 2016; 

Hunt et al. 2018; Oliveira et al. 2018).  

Factors to Consider for Genomic Selection 

Genomic selection is a method of marker-assisted selection in which genetic 

markers covering the whole genome of an organism are used so that all quantitative 

trait loci (QTLs) are in linkage disequilibrium with at least one marker (Meuwissen et al. 

2001; Goddard and Hayes 2007). This technology has become an important tool in 

animal and plant breeding mainly due to the large number of single of nucleotide 

polymorphisms (SNPs) and simple sequence repeats (SSRs) discovered by genome 

sequencing (Burgueno et al. 2012; Goddard and Hayes 2007). Many models can be 

used to test the prediction accuracy for genomic selection of a population, including 



 

29 

GBLUP, RRBLUP, Bayesian and machine learning. The accuracy of prediction models 

depends on several factors such as heritability, the size of the training set, statistical 

models, linkage disequilibrium and the marker density (Costa 2015; Picard 2015). 

These five factors have a positive correlation with prediction accuracy. Heritability 

expresses the proportion of the phenotypic variance that is explained by the genetic 

variance (Visscher et al. 2008) and can be considered as the most important factor 

when estimating prediction accuracy (Zhang et al. 2017). The prediction accuracy 

usually increases with increased trait heritability (Lian et al. 2014). This is corroborated 

by a study conducted by Zhang et al. (2017) where populations with higher trait 

heritability had higher genomic prediction accuracy values. This correlation is more 

pronounced for simple traits, but less for complex traits with low heritability values. In 

general, the prediction accuracy increases as the size of the training population 

increase, and it is related to the genetic relationship between the training and validation 

population (Liu et al. 2015). Similarly, prediction accuracy increases with an increase of 

the marker density, which means that high marker density is required to obtain accurate 

genomic prediction values, specifically for complex traits with low heritability (Zhang et 

al. 2017). Therefore, the distance between the markers should be less than 10-20 cM 

(Zhang et al. 2017). Another important consideration for genomic selection is G x E 

interaction, which is the physiological/ behavioral responses of individuals to different 

environmental conditions (Baye et al. 2011). Since prediction parameters vary 

depending on the testing environment, it is imperative to phenotype the training 

population across all target environments. Ultimately, genomic selection assigns a 

breeding value (GEBV) to a plant, which is an estimate of the ability of that individual to 
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produce superior offspring. This estimate is based on phenotypic measurement taken 

on the individual plant or more commonly, on several of its relatives. Generally, genomic 

selection is performed on a single trait, however, correlated traits can be used to predict 

complex traits with low heritability in a process called indirect or multi-trait genomic 

selection and trait-assisted selection (Fernandes et al. 2017; Velazco et al. 2019; 

Schulthess et al. 2015). Several studies have used simulated data to demonstrate how 

multi-trait models can increase the prediction ability of low-heritable traits or traits that 

are expensive or difficult to measure (Jia and Jannink 2012; Guo et al. 2014). More 

recently, other studies have assessed multi-trait GS in several crops using empirical 

phenotypic data (Schulthess et al. 2016; Rutkoski et al. 2016; Wang et al. 2016). 

Sorghum Breeding Program in Haiti 

The sorghum breeding program at Chibas, Haiti, was borne out a need for locally 

adapted, high-yielding and biotic tolerant varieties. Initial funding for the program was 

provided by the French government (ANR 2010-2014), and most recently by the 

Canadian (Global Affairs; 2014-2017) and U.S. governments (SMIL-USAID; 2017-

2018). The long-term goal for the sweet sorghum breeding program is to apply new 

technologies (e.g. marker-assisted selection, genome-wide association studies and 

genomic selection) to accelerate the cultivar development process. From this breeding 

program, dual purpose lines (high grain yield (up to 4Tons ha-1), high stem sugar 

concentration, (> 17°Brix)), non-photoperiodic, resistant to sugarcane aphid were 

released. These varieties are currently being tested for drought resistance (selecting for 

stay-green trait) and will be released for cultivation in drought-prone regions. These 

dual-purpose lines will serve as raw material to produce alcoholic beverage (rum), 

sorghum malt, pop sorghum and new products such as cereal bars. In addition, the 
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program seeks to evaluate the ratooning ability (up to three ratoons with no yield loss) 

of stay-green varieties (no tillering and high ratooning). Ratooning would allow farmers 

to do two cropping out of one planting (savings on land prep and weeding). A study 

conducted by Harlan and de Wet (1972) classified the primary gene pool, Sorghum 

bicolor (L.) Moench into five major races (bicolor, guinea, caudatum, kafir, and durra) 

and ten intermediate races, based on morphology. The varieties developed by CHIBAS 

are closer to the Caudatum group than any other group (Durra, Bicolor Asie, Bicolor AE, 

Guinea AAA, Guinea AO and Kafir). A study using 1,660 SNP markers revealed that 

there was less genetic diversity among CHIBAS varieties than that observed for 

Caudatum varieties in East Africa (Charles 2017).  Traces of selection were identified 

between the CHIBAS lines and the Caudatum group of East Africa and between Chibas 

lines and a sorghum diversity panel that included 967 genotypes representing 

worldwide sorghum diversity. This panel also included the five main sorghum races, the 

ten intermediate races and the four wildtype races. Of these loci, two were found on 

chromosome 6, the chromosome on which the RMES1 gene conferring resistance to 

Melanaphis sacchari is located (Charles 2017).   
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Table 2-1.  Sorghum nutrients per 100 g edible portions at 12% moisture 

  Sorghum 
Brown 
rice Maize Wheat 

Pearl 
millet 

Finger 
millet 

Protein (g) 10.9 7.9 9.2 11.6 11 6 

Fat (g) 3.2 2.7 4.6 2 5 1.5 

CHO (g) 73 76 73 71 69 75 

Crude Fiber (g) 2.3 1 2.8 2 2.2 3.6 

Ash (g) 1.6 1.3 1.2 1.6 1.9 2.6 

Energy (kcal) 329 362 358 348 363 336 

Calcium (mg) 27 33 26 30 25 35 

Iron (mg) 4.3 1.8 2.7 3.5 3 5 

Thiamin (mg) 0.3 0.41 0.38 0.41 0.3 0.3 

Niacin (mg) 2.83 4.31 3.57 5.05 2 1.4 

Riboflavin (mg) 0.14 0.04 0.19 0.1 0.15 0.1 
Adapted from Encyclopedia of Life Support Systems (EOLSS), 2004 
 

 

 
 

Figure 2-1.  The various utilities of sweet sorghum crop 
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Table 2-2.  Water requirement of several crops 

Plant  Water requirement (kg of water/kg of dry mater 

Sorghum 332 
Maize  358 
Barley 434 
Wheat 514 

Adapted from Chaurasla 2015 

 
 
 

 
 
Figure 2-2.  Sorghum cultivation area in Haiti (Pressoir and Lamure, personal 

communication) 
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CHAPTER 3 
MATERIALS AND METHODS 

Plant Material 

A population of 250 lines developed at CHIBAS, which are offspring resulting 

from crossing between parents derived from CIRAD (French Agricultural Research 

Centre for International Development) and local varieties (Charles 2017) were evaluated 

under irrigated and water-stressed environments. The C1 variety was used as a check 

because of its high yield and resistance to sugarcane aphid. C1 is called Papèpichon, a 

variety developed and released by CHIBAS. It is currently the most widely cultivated 

sorghum variety in Haiti (over 90% of acreage). 

Population Structure 

The genetic structure of a population, which is defined as the total genetic diversity 

and its distribution within a population, determines a population’s capacity to be 

improved or otherwise changed by selection (Gilleard and Redman 2016). The 250 

sorghum lines could be divided into three populations. The lines in the first population    

were mainly derived from a phenotypic recurrent selection (Figure 3-1). The initial 

population was developed by crossing F2 (BC1 BF 95 11/110) (carrying ms3) x ICSV 

25280. This population had a broader diversity, however many crosses that did not 

carry resistance to sugarcane aphid died. The second population included lines 

originating from a backcross selection where the initial population (S0) from the 

recurrent selection was subsequently crossed to: Coludo Nevado, 00-SB-FSDT-427, 

IS23563, WILEY, CIR-1/OG2-4G-1G-M-M, PCR-2>723C-1-M-1, Papèsèk, Dekabès (IS 

23572)  to introgress the resistance to sugarcane aphid (Melanaphis sacchari). The few 
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lines forming the third population were from a hybridization between Papèsèk (Centa 

S3) and Dekabès (IS 23572).  

Experimental Design 

The 250 genotypes were planted in a randomized complete block design (RCBD) 

into three fields. The study was conducted at one of the experimental stations of 

CHIBAS (Center for Bioenergy and Sustainable Agriculture) located in the Plaine du Cul 

de Sac (Croix des Bouquets-Haiti). Plaine du Cul de Sac is an area of about 360 km2, 

with a length of 32 km and 25 km wide, it is bound on the North and South by high 

mountains, on the West by the Gulf of la Gonȃve on the banks of which lies the Haitian 

capital Port-au-Prince and the plain of Arcahaie which extends to the West. This region 

is located at 26 meters from sea level, latitude 18°37'46.7"N, longitude 72°13' 33.9"W. 

The climate data of Croix des Bouquets during the period of experiment are presented 

in Table 3-1. 

Application of Treatments 

The three water regimes were assigned as irrigation, vegetative water stress and 

pre-flowering water stress. Each water regime was replicated four times.  Each 

genotype was planted on 4 rows with a space of 70 cm between rows and 25 cm within 

rows. Each plot had a length of 2.8 m and a width of 3.5 m. There were 304 plots per 

replicate and 60 plants per plot as some parent lines were also planted during the 

experiment (Figure 3-2). The plant population density was 57,142 plants ha-1, estimated 

using the formula fitting in the Equation 3-1 from Adebooye et al. (2006): 

𝑃𝑝 =
10000 𝑚2 𝑋 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑝𝑒𝑟 𝑠𝑡𝑎𝑛𝑑

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 (𝑚2)
 

(3-1) 
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The blocks under irrigation treatment were separated from those under drought stress 

by a 5-meter buffer, which was also a border (Figure 3-3). The experiment was planted 

from November 2017 to July 2018 and no fertilization was applied to the plants. Sowing 

was carried out in November 2017 and February 2018. 

 The fully irrigated treatment experiment was watered every 8 days throughout 

the growing season. For the pre-flowering water stress, the plots were watered every 

height days and irrigation was stopped just before flowering initiation (stopped at the 

vegetative stage). For the vegetative water stress, plots were grown on residual soil 

moisture (no irrigation and no rain). The latter is considered as a harsher stress as the 

soil has a slight salinity in addition to the water stress treatment. Irrigation was applied 

to the field by a system of manual irrigation where the water was pumped using an 

electric pump and brought to the field from canals prepared by farm workers. The soil 

moisture content and water deficit of sorghum were estimated. Plants were kept free 

from weeds by regular manual weeding. The soil moisture content was estimated during 

the period of the experiment using two different methods. The first method was a 

conventional approach based on the use of a hydro-sensor moisture probe, where the 

bars of the sensor are inserted into the ground and after a few seconds, the reading 

was recorded. The other method was based on a gravimetric approach where the soil 

moisture content is estimated by measuring the difference in weight of a soil sample 

before and after drying (Petropoulos et al. 2013).  

Phenotypic Data Collection 

Data were collected on phenological parameters (i.e. germination rate, plant 

vigor, homogeneity of plots, anthesis (days), flowering (days), and maturity (days)), 

growth parameters [plant height, stem diameter, total leaf number, stay-green (total 
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green leaf, leaf weight), and total stem number], soluble solids concentration and yield 

(stem weight, juice weight, and grain yield). Gemination rate was estimated one week 

after the sowing date as the number of holes having a seedling over the total number of 

holes. At the same time the plant vigor was estimated using a scale of 1 to 9, with 1 

denoted highly vigorous and 9 represented poor vigor. Plot homogeneity was also 

estimated looking at the physical appearance of plants in the same plots using a similar 

scale as for plant vigor, with 1 representing highly homogeneous and 9 denoted highly 

heterogenous. Heading time and flowering time were observed and defined as the 

number of days from sowing until anthesis and 50% of the plants flowering in the plot, 

respectively. After flowering, plant height was measured from the ground to flag leaf 

sheath on 10 plants selected randomly in the two central rows using a graduated 

polyvinyl chloride pipe. Stem diameter was measured on ten plants randomly selected 

in the two central rows using a digital caliper. Two different measures of diameter, taken 

at the node, were recorded for each plant, one at the base of the panicle and the other 

at the base of the stem. Number of stems was counted on all plants in the two central 

rows, then extrapolated to obtain the total number of stems per plot. The number of 

leaves and green leaves were counted respectively on five plants randomly selected in 

the central rows during harvesting.  Stem weight (leaf blade plus sheath) was measured 

by weighing the stems with and without leaves using a digital scale. Leaf weight was 

obtained as the difference between stem weight with leaf and without leaf. Generally, 

sorghum plots are harvested when 80% of the plants are at physiological maturity. For 

this study, the harvesting operation was performed 52 days after anthesis. In sorghum, 

the physiological maturity is confirmed by the presence of the black scar found in the 
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hilum or by crushing the grain of sorghum in the mouth to make sure that the grain is 

dry. Once mature, the panicles were harvested from all four rows of each plot. Then we 

checked the number of total panicles for each plot.  The number of filled and unfilled 

panicles harvested for each plot was counted and weighted separately. Panicle weight 

was recorded as the sum of the weight of filled and unfilled panicles. Grain yield given in 

kg plot-1 was estimated as 80% of the panicles weight harvested at grain physiological 

maturity, and then converted to tons ha-1. After weighing the stems without leaves, the 

stems were milled, using a motor mill handled by two people placed at opposite sides. 

The weight and the volume of the extracted juice were measured using a scale and a 

graduated cylinder, respectively. Finally, the concentration of soluble solids (oBrix) was 

measured with an Atago brand refractometer graduated from 0 to 33 %. This measure 

was determined by adding a few drops of subsample juice from each plot on the slide of 

the refractometer.  

Generation of Genotypic Data 

Young leaf tissues were collected from seedlings of each of the 250 progeny 

lines and their parents in a field at one of the experimental stations of CHIBAS.  The leaf 

samples were harvested from the first five seedlings within each varietal plot using 96-

well plates. The DNA was extracted using the Qiagen Plant DNAeasy DNA extraction 

kit. The DNA samples were shipped to Kansas State University for sequencing analysis 

using genotyping by sequencing technology (GBS). Genotyping by sequencing is a set 

of genomic analyses that allow the discovery of SNP markers through next generation 

sequencing (NGS) (Chung et al. 2017; He et al. 2014; Elshire et al. 2011). The 

genotyping by sequencing procedure includes several steps. First, the genomic DNA is 

digested with restriction enzymes, then ligated with barcode adapters, followed by PCR 
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amplification and sequencing analysis of the amplified DNA pool. Read alignment and 

SNP calling of genotyping by sequencing datasets can be performed using various 

bioinformatics pipelines (He et al. 2014). For this study, the Illumina Nextseq500 with 

384X Sample Multiplexing and ApeKI Restriction Enzyme was used to generate the 

SNPs (Elshire et al. 2011). About 160,066 SNPs were identified from 1283 individuals 

based on the depth of the sequencing (number of reads >2), missing data and the 

frequency of the alleles. 

Phenotypic Data Analysis 

Twelve traits of the 250 sorghum genotypes were evaluated in fully irrigated, 

vegetative water stress, and pre-flowering water stress environments. The observations 

that fell outside of the interval [Q1-1.5 X (Q3-Q1); Q3 + 1.5 x (Q3-Q1)] were considered as  

outliers (about 40 genotypes) and treated as missing data with Q1, Q2 and Q3 

representing the first quartile, second quartile and third quartile, respectively in the 

boxplot distribution for each trait. To meet the assumptions of normality, heading time, 

maturity and juice weight data were log transformed. An appropriate univariate linear 

mixed model was fitted using restricted maximum likelihood estimation with the Asreml-r 

4.1 package in R software (Butler, 2018) to extract the best linear unbiased estimates 

(BLUEs) using the Equation 3-2: 

y = µ + 𝑋𝐼𝑏𝐼 + 𝑋𝐺𝑏𝐺 + 𝑋(𝐼×𝐺)𝑏(𝐼×𝐺) + 𝑍𝐵𝑢𝐵 + 𝑍𝑃𝑢𝑃 + 𝜀  
(3-2) 

where 𝑦 is the response variable, 𝜇 is a common intercept, 𝑋𝐼, 𝑋𝐺, 𝑋(𝐼×𝐺), 𝑍𝐵, and 𝑍𝑃 are 

the incidence matrices for the respective effects of irrigation, genotypic, interaction 

irrigation × genotypic, block, and main plot. 𝑏𝐼, 𝑏𝐺, and 𝑏(𝐼×𝐺) are the respectively fixed 

effects for irrigation, genotype, and irrigation × genotype interaction. 𝑢𝐵 and 𝑢𝑃 are the 



 

40 

respectively random effects for block and main plot being 𝑢𝐵 ∼ 𝑀𝑉𝑁(0, 𝐼4𝜎𝐵
2) where 𝐼4 

an identity matrix of order four and 𝜎𝐵
2 the variance component for the block effect, and 

being 𝑢𝑃 ∼ 𝑀𝑉𝑁(0, 𝐼12𝜎𝑃
2) where 𝐼12 an identity matrix of order twelve and 𝜎𝑃

2 the 

variance component for the main plot effect, 𝜀 is the residual effect being 𝜀 ∼

𝑀𝑉𝑁(0, 𝐼𝑁𝜎𝑒
2) where 𝑁 is the total number of observations and MVN (multivariate 

normality test). After fitting the model, the eBLUEs (estimated best linear unbiased 

estimates) were obtained for the genotypic effects (𝑏𝐺) which were later used in the 

genomic prediction study. About 42 genotypes were excluded for this analysis, two of 

them lacked genotypic information (C35_192_1 and D14_311_2), the other forty 

genotypes have missing information for at least one trait for all replications in either one 

of the treatments. Therefore, there was no way to model the effect of the trait for those 

genotypes in a given treatment using only the phenotypic information. 

Computation of Heritability 

The genomic heritability of the twelve traits under the different treatments was 

estimated using the univariate linear mixed model as in Equation 3-3: 

𝑦 = 𝜇 + 𝑋𝐼𝑏𝐼 + 𝑍(𝐼×𝐺)𝑢(𝐼×𝐺) + 𝑍𝐵𝑢𝐵 + 𝑍𝑃𝑢𝑃 + 𝜀 
(3-3) 

where 𝑦 is the response variable, 𝜇 is a common intercept, 𝑋𝐼 is the incidence matrix for 

the irrigation effect. 𝑏𝐼 is the fixed effect for the irrigation effect. 𝑍(𝐼×𝐺), 𝑍𝐵, are 𝑍𝑃 are the 

respectively random effects for the irrigation × genotype interaction, block, and main 

plot. 𝑢𝐼×𝐺 is the random effect for the interaction irrigation × genotype where 𝑢𝐼×𝐺 ∼

𝑀𝑉𝑁(0, 𝐷𝐼 ⊗ 𝐾) being $\D_{I}$ a diagonal variance-covariance structure (heterogenous 

diagonal and off-diagonal equal zero) of dimension three, 𝐾 a genomic relationship 

matrix built as in Van Raden (2008), and 𝜎(𝐼×𝐺)
2  is the variance component for the 
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interaction term confounding with the genotypic variance. 𝑢𝐵 and 𝑢𝑃 are the respective 

random effects for block and main plot being 𝑢𝐵 ∼ 𝑀𝑉𝑁(0, 𝐼4𝜎𝐵
2) where 𝐼4 an identity 

matrix of order four and 𝜎𝐵
2 the variance component for the block effect, and being 𝑢𝑃 ∼

𝑀𝑉𝑁(0, 𝐼12𝜎𝑃
2) where 𝐼12 an identity matrix of order twelve and 𝜎𝑃

2 the variance 

component for the main plot effect, 𝜀 is the residual effect being 𝜀 ∼ 𝑀𝑉𝑁(0, 𝐷𝐸 ⊗ 𝐼𝑁𝑔) 

being $\D_{I}$ a diagonal variance-covariance structure (heterogenous diagonal and 

off-diagonal equal zero) with of dimension three and 𝑁𝑔 is the number of genotypes 

times the number of blocks. The heritability was computed for each irrigation level as in 

Equation 3-4: 

ℎ2 =  𝜎𝐺
2/(𝜎𝐺

2 + 𝜎𝐸
2) 

(3-4) 

where 𝜎𝐺
2 is the variance component for the given irrigation level in 𝐷𝐼 matrix, and 𝜎𝐸

2 is 

the variance component for the given irrigation level in 𝐷𝐸 matrix using the Asreml-r 4.1 

package in R software (Butler, 2018). Using the phenotypic data, the broad-sense 

heritability was also computed for each irrigation treatment using the same formula as in 

Equation 3-4, where𝜎𝐺
2 is the variance component of the genotypes for the given irrigation 

level and 𝜎𝐸
2 is the variance component of the replicates for the given irrigation treatment 

using the ‘lmer’ function in the R package lme4, v1.1-7 (Bates et al. 2016). 

Genomic Data Analysis 

The Single nucleotide polymorphisms (SNPs) were filtered using VCFtools 

package in R software based on minimum allele frequency of 1%, biallelic markers, 

maximum population missing data of 30%. After filtering, a total of 29,072 markers and 

208 individuals were used in the genomic selection analysis. 
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Population Structure Analysis 

The principal component analysis (PCA) and k-means clustering analysis were 

combined to evaluate the population structuring using the R software. The visualization 

of genetic differentiation among genotypes was performed by drawing a PC\ score plot 

in which for each genotype the value of PC1 and PC2 are plotted against each other.  

The population structure was also inferred using a heatmap based on genomic pedigree 

information. 

Fitting of Genomic Selection Models 

Prediction ability of genomic selection was evaluated using four models: BRR, 

Bayes A, Bayes B, Bayes C. These models differ with respect to assumptions about the 

marker effects. Bayesian methods depend on the inference of marker effects where the 

sum of estimated effects identified the genetic value of an individual (Ferrão et al. 

2017). These models differ in the priors used for the regression while having a 

Gaussian distribution with a mean vector represented by a regression on the markers 

and a common residual variance (Ferrão et al. 2017). 

• BRR model: The Bayesian ridge regression is the Bayesian version of RRBLUP. 
This model assumes that all marker effects are normally distributed and have 
identical genetic variance as in Equation 3-5 (Meuwissen et al. 2001): 
 
 

gi~N (0, 𝜎𝑔
2), 𝜎𝑔

2 = 𝜎𝑔1
2 = 𝜎𝑔2

2 = ⋯ = 𝜎𝑔𝑚
2  

(3-5) 

The prior distribution of the genetic variance of the markers follows a scaled inverted 

chi-squared distribution variance.  The SNP effects are random, normally distributed, 

have identical variance and is given by the Equation 3-6: 

𝜎𝑔𝑖
2 |vg, Sg~vgSg𝜎𝑋𝑣𝑔

−2 
(3-6) 
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Where vg is degree of freedom and Sg a scale (Meuwissen et al. 2001; Mota et al. 

2018). 

• Bayes A model: Unlike BRR, Bayes A assumes that the markers have different 
variances, are normally distributed and follow a scaled inversed ꭕ2 distribution 
with degrees of freedom va and scale parameter 𝑆𝑎

2 as in the Equation 3-7: 
 

 
(3-7) 

Where pk corresponds to the allele frequency of the kth SNP,   is the variance of a 

given marker and  is the additive genetic variance that is explained by the SNPs 

(Resende et al. 2012; Habier et al. 2011; Meuwissen et al. 2001). 

• Bayes B model: This method uses a prior having a high density (π) at 𝜎𝑔𝑖 
2 = 0 and 

an inverted chi-square distribution for 𝜎𝑔𝑖 
2  > 0 and assumes that marker effects 

have identical and independent mixture distributions with the equation 3-8: 
 

P(𝜎𝑔𝑖
2 ,gi|y*) = p(𝜎𝑔𝑖

2 |y*) X p (gi|𝜎𝑔𝑖
2 , y*) 

(3-8) 

 
where y* denotes the data y corresponding to the mean and all other genetic effects 

except gi, 𝜎𝑔𝑖
2  = 0 with probability 𝜋 and gi represents the genetic effects of the SNPs at 

the ith 1-cM segment (Meuwissen et al. 2001). 

• Bayes C model:  This model assumes the normalization of the distribution effects 
of one fraction of the SNPs (𝜋 ) and that the other fraction of SNPs (1- 𝜋) has 
zero effects and is expressed by this equation: 
  

y= 1µ + ZMQq +e 
(3-9) 

 
where M is the design matrix of scaled SNP genotypes; Q is a diagonal matrix with 

indicators on the diagonal that are 1 if the SNP has an effect (with prior probability π) 

and 0 if it has no such effect (with prior probability (1 − π); q is a vector of SNP effects 
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(q j ) assumed to be normally distributed, i.e. qj∼N(0,σ2q)qj∼N(0,σq2) with probability π 

and 0 otherwise (Habier et al. 2011; Iheshiulor et al. 2017).  

All the models were fitted using the Bayesian Generalized Linear Regression 

(BGLR) package (Pérez and de Los Campos, 2014; Oliveira et al. 2018). For each 

model, the sampler algorithm was running for a total of 30,000 iterations, with 5,000 

discarded as burn-in. We used a cross-validation procedure to compare the models, 

where the whole population was randomly partitioned into two subsets (75% training set 

and 25% testing set). The cross-validation (2-fold) was repeated 100 times to obtain 

accurate estimates of the average prediction correlation. For each cross-validation set, 

we began by fitting the genomic selection models on 156 genotypes (training set), to 

estimate marker effects based on genotypic and phenotypic information. These marker 

effects then provided genomic estimates of the breeding values of the remaining 52 

individuals (testing set), based only on genotypic information. The principal component 

analysis was included into the genomic selection models to correct for a population 

structure. Finally, the Pearson’s correlation between the genomic estimated breeding 

values and the breeding values estimates provided estimates of the prediction accuracy 

of the models.  Thus, two-step approaches were used; the phenotypic model was first 

fitted, then the best linear unbiased estimate values (BLUEs) were used in the genomic 

prediction studies. The genomic prediction referred to traditional scenarios when a 

common treatment effect is extracted across the three conditions. This treatment effect 

is interpreted as the estimated breeding value across environments, where the higher 

values ultimately mean more ‘stable’ genotypes. We then performed a stratified analysis 

which involved predictions for each treatment. Here, we present a scenario where the 
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breeder would like to train a model in one condition to predict genotype performance in 

a new one. In addition, different multi-trait prediction models were computed for grain 

yield in order to test the improvement of the prediction accuracy across environments. 

For this analysis, the models were re-trained in the irrigated scenario and predicted for 

the water stress environments. The procedure is similar to across-environment 

scenarios except that correlated traits such as leaf weight, plant height, stem weight, 

total green leaf were included as auxiliary traits in the model. These traits were chosen 

based on their positive, significant, consistent correlation and genetic covariance with 

grain yield across the three environments. The computation of the genomic prediction 

analysis was performed using the HiPerGator cluster at University of Florida. 
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Table 3-1.  Temperature and rainfall data of Croix des Bouquets during the time 
of the experiment  

Adapted from WorldWeatherOnline.com 
 

 

 
 

Figure 3-1.  Phenotypic recurrent selection diagram of the sorghum breeding 
program from CHIBAS 

 

  Temperature (oC) Rainfall  

Months Min  Max Average Rain (mm) Days 

Nov-17 22 31 26 41.38 18 

Dec-17 22 28 24 1.71 2 

Jan-18 20 29 23 10.18 12 

Feb-18 19 29 23 0.55 1 

Mar-18 20 29 24 13.12 12 

Apr-18 21 29 25 29.06 23 

May-18 22 30 25 9.47 6 
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Figure 3-2.  View of one block 

 
 

 
 

Figure 3-3.  View of the experimental design 
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CHAPTER 4 
RESULTS 

Phenotypic Characteristics of the Population 

The distribution of the phenotypic values varied substantially across the 

three environments, which showed that the impact of water stress was quite 

different among the genotypes. As might be expected, the performance of the 

lines was substantially higher in the irrigated environment than in the two water 

stress conditions. Generally, the genotypes were more affected by the vegetative 

water stress environment than by the pre-flowering water stress (Table 4-1, 

Figures 4-1, 4-2). The vegetative water stress was severe and led to substantial 

reductions in almost all the traits as compared to the values observed under fully 

irrigated and pre-flowering water stress conditions. The pre-flowering water 

stress environment was moderate, with a modest reduction in the performance of 

the genotypes as compared to the values obtained in the fully irrigated 

environment. The difference in the severity of the stress may be attributed to the 

exposure time and the application time of the water stress. The combined 

analyses of variance showed significant genotype x treatment interaction for all 

the traits (Table 4-2). The environment (treatment x replicates) mean squares 

were highly significant for all traits, meaning that the field was probably 

heterogeneous. Genotypic differences among the replicates were non-significant 

for the traits except for total leaf number and soluble solids concentration. The 

interaction between genotypes x treatment was highly significant for all traits 

(Table 4-2).  



 

49 

Heritability 

  Genetic characterization and selection of specific traits mainly 

depends on the magnitude of the heritability of the trait. The heritability can 

change over time due to changes in variance of genetic values. Thus, we 

calculated the broad-sense and genomic heritabilities for all twelve traits in the 

three environments. The estimated broad-sense heritability ranged from 0.06 to 

0.43 for vegetative water stress, from 0.31 to 0.51 for the pre-flowering water 

stress, and from 0.19 to 0.71 for the irrigated environment (Table 4-3). Overall, 

the highest broad-sense heritability estimates were observed for the irrigated 

condition, where the highest values were obtained for days to heading (0.71), 

maturity (0.71), plant height (0.43) and soluble solids concentration (0.43). The 

genomic heritability estimates were higher than the broad-sense heritability, with 

the highest values obtained for heading (0.82), maturity (0.82), total soluble 

sugar (0.61), grain yield (0.61) and juice weight (0.60) in the pre-flowering water 

stress condition. Overall, the values varied from 0.16 to 0.65 for vegetative water 

stress, 0.29 to 0.82 for the irrigated condition and 0.35 to 0.82 for pre-flowering 

water stress (Table 4-3).  

Phenotypic Correlation 

Tandem selection of multiple traits in superior genotypes requires positive 

and consistent correlations among those traits. Significant phenotypic 

correlations were found among almost all pairs of traits across the environments 

(Figures 4-3 to 4-5). Phenotypic correlations varied in terms of magnitude across 

the environments. Grain yield was positively and significantly correlated with all 

eleven traits in the irrigated environment. For the water stress environments 
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(vegetative and pre-flowering water stress), no significant correlations were 

observed between grain yield, heading and maturity. The strongest positive 

correlation between grain yield and leaf weight was observed for the pre-

flowering water stress environment, followed by the vegetative water stress 

environment. Significant positive correlations between grain yield and soluble 

solids concentration were observed for all three environments. The linear 

relationship between maturity and heading in the irrigated and pre-flowering 

water stress environments can be explained by the fact that in these 

environments, the plots were homogeneous, and the genotypes were harvested 

about 45 days after heading (Figures 4-3 to 4-5). 

Genotypic Results 

Population Structure 

A hypothetical number of subpopulations between three and four were 

tested using a combination of PCA and k-means clustering analyses. Based on 

pedigree information of the sorghum breeding lines from CHIBAS, the number of 

subpopulations is likely three (Charles 2017). The lines coded with the letter C 

are from the first generation of phenotypic recurrent selection and those coded 

with letter D are from the second generation (Figure 4-6). From the results of the 

two-dimensional plot obtained in the PCA analysis, the first principal component 

(Dim1) explained 52.2% of the variance and the second component (Dim2) 

accounted for 14.5 % of the variance (Figure 4-6).The heatmap also revealed 

that the strength of genomic relationships among the different breeding lines is 

relatively high (Figure 4-7). 
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Chromosomal Distribution of SNPs 

  The distribution of 29,072 SNPs across the ten sorghum chromosomes 

was checked after filtering for missing values (30%) and minor allele frequency 

(1%). The average number of SNPs per chromosome was about 2,907, with the 

highest number of SNPs found in chromosome 3, and the lowest in chromosome 

9 (Figure 4-8). This distribution showed that the SNPs covered the entire 

sorghum genome and was sufficient for the genomic prediction analysis. 

Prediction Accuracy of the Models within Environment 

 Prediction accuracy for the models was estimated by performing 

correlation analysis between the breeding values predicted by genomic selection 

and the estimated breeding values. Although the models tested differ mainly in 

their assumptions about the variances of markers effects, they yielded similar 

predictive abilities for the twelve traits. Even though differences between the 

models were small, Bayes B showed a modest improvement over the three other 

models for all the traits except for soluble solids concentration (Figure 4-9). The 

predictive values obtained were medium (0.49) to high (0.70) and, in general high 

prediction accuracy values are practical for genomic selection. On average, the 

highest predictive abilities were obtained for total green leaf (0.70), total soluble 

solids concentration (0.68), leaf weight (0.68), total leaf number (0.68), stem 

weight (0.65), stem diameter (0.64),  juice weight (0.63) and heading (0.60) while 

grain yield had the lowest value (0.49) (Table 4-4).  

Computational Feasibility 

Considering the relatively small differences found between the models, 

differences in computation time may be an important factor that determines the 
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model of choice in practical applications, especially for programs with low 

computational resources. On average, BRR (14 minutes) was the fastest while, 

Bayes B, that is based on variable selection required more time (21 minutes) to 

run each replicate during cross-validation using the HiPerGator cluster (Figure 4-

10). Using a single computer, these models can take between 13 to 16 hours to 

run (Mota et al. 2018). 

 Prediction Accuracy of the Models across-Environments  

As the BRR had the least computation time, it was used to test the 

predictive performance across different cross validation scenarios (Figure 4-11). 

Overall, cross-validation using within-environment scenarios yielded higher 

predictive performances than across-environments scenarios involving 

vegetative water stress environment (Figure 4-11, scenarios 1-3 and 6-9). Most 

scenarios that involved vegetative water stress (water 2) had lower predictive 

accuracies (Figure 4-11, scenarios 6,7,8,9). However, soluble solids 

concentration, leaf weight, total green leaf and total leaf number showed high 

predictive capacity across all scenarios (Figure 4-11). When the model was 

trained in the fully irrigated treatment to predict the pre-flowering water stress, 

high predictive values were observed for all the traits except for grain yield and 

total stem number (Figure 4-11, scenario 5). Similarly, high predictive values 

were also observed when the model was trained in the pre-flowering water stress 

environment to predict the irrigated condition (Figure 4-11, scenario 4). 

Multi-trait Prediction Models 

 Predictive accuracy for grain yield was low for almost all the 

scenarios (Figure 4-11). Improvement of prediction accuracy was attempted by 
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including correlated traits, e.g. leaf weight, plant height, total green leaf, and stem 

weight as auxiliary traits in the models (Tables 4-4; Figures 4-3 to 4-5). Those 

traits had highly significant and consistent correlation with grain yield across the 

three environments. High genetic covariances were also observed between grain 

yield and the auxiliary traits in the drought environments (Table 4-7). The 

prediction accuracy varied from 0.36 to 0.37 for the pre-flowering water stress 

and from 0.13 to 0.16 for the vegetative water stress environment. The results 

suggested no improvement of prediction accuracy of grain yield across-

environment based on multi-trait models. 
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Table 4-1.  Summary statistics of the 12 phenotypic traits presented by treatment 

Traits Min 1st Quartile Median Mean  3rd Quartile Max 

Pre-flowering water stress 

Plant height 114 140 153 152.5 164.7 192.5 

Stem diameter 12 14.18 15.47 15.44 16.15 18.24 

Heading 65 78 84 84.88 90 123 

Maturity 110 123 129 129.9 135 168 

Total leaf number 7 22 27 26.68 31 47 

Total green leaf 4 16 19 19.31 31 47 

Total stem number 3 19 21 20.74 24 31 

Soluble solids con. 4.67 9.75 11.75 11.74 13.5 17.38 

Juice weight 0.18 1.17 1.73 1.75 2.88 4.89 

Stem weight 0.99 8.65 10.52 10.49 12.94 21.05 

Leaf weight 0.2 4.5 6.39 6.29 7.84 12.04 

Grain yield 1.67 3.32 3.71 3.74 4.15 5.22 

Vegetative water stress 

Plant height 105.1 12.2 129.6 130.5 137.6 171 

Stem diameter 14.09 16.97 17.69 17.72 18.43 20.6 

Heading 74 91 96 97.71 102 143 

Maturity 108 140 146 145.7 152 185 

Total leaf number 15 25 29 29.34 33 46 

Total green leaf 12 19 22 22.75 26 38 

Total stem number 8 13 16 15.97 18 29 

Soluble solid con. 5.85 10.89 12.02 12.22 13.14 18.2 

Juice weight 0.29 1.46 2.22 2.28 2.94 5.9 

Stem weight 2.48 4.92 6.28 6.57 8.16 14.8 

Leaf weight 1.12 2.72 4.01 4.11 4.98 12.7 

Grain yield 0.37 2.03 2.27 2.33 2.61 3.92 

Irrigated 

Plant height 122.5 151.1 162.2 162 172.7 209.2 

Stem diameter 12.75 14.88 15.54 15.5 16.22 18.73 

Heading 62 75.5 80 80.1 84 101 

Maturity 107 120.5 125 125.1 129 146 

Total leaf number 13 28 32 31.8 36 50 

Total green leaf 9 20 24 23.99 28 45 

Total stem number 13 23 25 24.36 26 32 

Soluble solid con. 9 12.5 14.5 14.13 15.5 18 

Juice weight 0.42 1.65 2.07 2.11 2.57 3.96 

Stem weight 4.19 11.12 13.11 12.95 15.05 20.61 

Leaf weight 3.88 6.98 8.62 8.51 9.82 13.86 

Grain yield 3.25 4.12 4.42 4.44 4.73 5.76 

Plant height (cm), stem diameter (mm), heading and maturity (days), total leaf number, total 
green and total stem number (number), soluble solids concentration (obrix), Juice weight (kg/m2), 
stem weight and leaf weight (kg/ha), grain yield (T/ha). 
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Table 4-2.  Mean squares from the combined analyses of variance for evaluated 
traits across environments 

  Source of variation 

  
Genotypes 

(G) 
Treatment 

(T) 
Replicates 

(R) G x T G x R T x R Residuals 

df 248 2 3 478 744ns 6 1426 

PH 1854*** 236070*** 12578*** 404*** 246ns 3102*** 370734 

SD 8.40*** 1550.42*** 158.70*** 2.44** 1.9ns 76.34*** 2 

H 396*** 76600*** 1147*** 73*** 42ns 438*** 44 

M 354*** 95052*** 161* 245*** 50ns 419*** 55 

TLN 257.6*** 6017.3*** 806*** 69.1*** 56.8*** 603.2*** 50.2 

TGN 194.7*** 5145*** 543.5*** 53.2*** 45ns 429*** 40.7 

TSN 74.3*** 62202.9*** 144.5*** 34.6*** 21.1ns 276.4*** 22.6 

TSS 31.7*** 3450.3*** 180.5*** 6.1*** 4.1* 96.9*** 3.6 

JW 2.34*** 287.88*** 16.33*** 0.86*** 0.56ns 4.21*** 0.58 

SW 57.9*** 7684.6*** 182.1*** 15.8*** 8.51ns 157.5*** 9 

LW 25.19*** 2564.89*** 9.84ns 7.78*** 5.06ns 63.60*** 5.25 

GY 2.15*** 562.51*** 9.31*** 0.95*** 0.58ns 13.46 0.57 

*, **, *** Significant at the 0.05, 0.01 and 0.001 alpha levels, respectively. 

 
 

 
 
Figure 4-1.  Graphical distribution of the traits by treatments 
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Table 4-3.  Genetic and phenotypic variance, Broad-sense heritability, Standard 
error and genomic heritability by treatment 

Traits 
Genetic 
variance Residual 

Phenotypic 
variance 

Broad-
sense 
heritability 

Standard 
error 

Genomic 
heritability 

  Pre-flowering water stress 

PH 159.27 355.7 514.97 0.31 3.97 0.53 

SD 0.7 1.59 2.29 0.31 0.04 0.35 

H 40.13 38.48 78.61 0.51 0.52 0.82 

M 40.12 38.47 78.59 0.51 0.52 0.82 

TLN 29.67 42.61 72.28 0.41 0.58 0.48 

TGL 19.7 34.07 53.77 0.37 0.45 0.4 

TSN 10.62 22.88 33.5 0.32 0.29 0.43 

TSS 4.6 4.76 9.36 0.49 0.08 0.61 

JW 0.32 0.65 0.97 0.33 0.05 0.6 

SW 7.84 10.44 18.28 0.43 0.18 0.54 

LW 3.22 5.14 8.36 0.39 0.1 0.5 

GY 0.37 0.75 1.12 0.33 0.04 0.61 

  Vegetative water stress 

PH 114.11 149.39 263.5 0.43 1.99 0.43 

SD 0.51 2.97 3.48 0.15 0.05 0.27 

H 33.95 84.55 118.5 0.29 0.96 0.6 

M 8.12 119.72 127.84 0.06 0.42 0.65 

TLN 14.23 50.39 64.62 0.22 0.52 0.17 

TGL 9.86 42.35 52.21 0.18 0.39 0.17 

TSN 5.76 28.82 34.58 0.16 0.25 0.22 

TSS 1.6 2.88 4.48 0.36 0.06 0.32 

JW 0.08 0.28 0.36 0.23 0.04 0.19 

SW 2.78 7.09 9.87 0.28 0.11 0.23 

LW 1.6 4.51 6.11 0.26 0.08 0.22 

GY 0.06 0.39 0.45 0.14 0.04 0.16 

 Irrigated 

PH 185.23 250.47 435.7 0.43 3.19 0.51 

SD 0.63 1.41 2.04 0.31 0.04 0.29 

H 30 12.21 42.21 0.71 0.14 0.82 

M 30 12.21 42.21 0.71 0.14 0.82 

TLN 21.76 64.13 85.89 0.25 0.65 0.28 

TGL 18.15 50.32 68.47 0.26 0.53 0.33 

TSN 4.43 15.73 20.16 0.22 0.16 0.31 

TSS 2.71 3.62 6.33 0.43 0.07 0.45 

JW 0.24 0.73 0.97 0.24 0.03 0.37 

SW 6.24 9.09 15.33 0.41 0.13 0.5 

LW 2.18 5.85 8.03 0.27 0.08 0.37 

GY 0.13 0.55 0.68 0.19 0.03 0.35 
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Figure 4-2.    Phenotypic correlation between the twelve traits in vegetative water 
stress condition  

 
 
Figure 4-3.    Phenotypic correlation between the twelve traits in pre-flowering 
water stress condition 
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Figure 4-4.    Phenotypic correlation between the twelve traits in irrigated 
condition 

 
 
Figure 4-5.    Principal component score plot obtained from Principal component 

analysis (PCA) for 208 lines and data of 29072 SNPs, PC1: 52.2 % 
and PC2: 14.5% 
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Figure 4-6.    Heatmap of the genomic relationship matrix from CHIBA’s sweet 
sorghum breeding lines showed the subdivision of the breeding population, at the 
bottom and right side are the name of the genotypes 

 
 
Figure 4-7.    Distribution of the 29,072 along the ten sorghum chromosomes 
SNPs (left), the number of SNPs within 1 Mb window size (right) 
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Table 4-4.  Average prediction accuracy by traits and models 

Trait Bayes A Bayes B Bayes C BRR 

Soluble solids 
concentration 0.739368 0.511396 0.736653 0.736499 

Grain yield 0.490796 0.491373 0.482639 0.481198 

Heading  0.597978 0.599583 0.595495 0.596233 

Juice weight 0.632285 0.632314 0.629028 0.629876 

Leaf weight 0.684383 0.684510 0.682436 0.683309 

Maturity  0.541581 0.542610 0.541116 0.541886 

Plant height 0.532908 0.533622 0.524404 0.523821 

Stem diameter 0.639178 0.639478 0.638274 0.637813 

Stem weight 0.654837 0.655519 0.651161 0.651939 

Total leaf number 0.679599 0.680321 0.679481 0.679807 

Total Stem number 0.594613 0.594769 0.593353 0.593671 

Total green leaf  0.699868 0.698784 0.699030 

 
 
 
 
Table 4-5.  Average running time per trait and model in minutes for 100 replicates 

Trait Bayes A Bayes B Bayes C BRR 

Soluble solids 
concentration 18.00 15.89 19.61 11.33 

Grain yield 17.63 22.62 18.34 13.23 

Heading 17.89 23.44 18.76 15.15 

Juice weight 20.35 17.59 19.53 11.28 

Leaf weight 17.13 21.49 17.56 12.36 

Maturity  17.47 23.38 18.70 16.34 

Plant height 17.31 20.26 19.10 18.98 

Stem diameter 16.56 21.64 19.08 18.96 

Stem weight 20.36 17.44 17.42 11.04 

Total leaf number 18.95 21.39 17.24 16.54 

Total Stem number 20.47 23.85 16.46 11.39 

Total green leaf  23.60 16.40 16.56 

Average 18.38 21.05 18.18 14.43 
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Figure 4-8.    Predictive ability of the models 

 

 
 

Figure 4-9.    Total runtimes in minutes for fitting the four genomic prediction 
models in all cross-validation runs 
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Figure 4-10.    Genomic prediction of experimental scenarios 

Scenarios 1 -3 involved GS performance within treatments, scenarios 8-9 compare GS 
performance across irrigated and water stress 2 conditions (vegetative water stress), 
scenarios 4-5 assess GS performance across irrigated and water stress1 (pre-flowering 
water stress), scenarios 6-7 compare GS performance across water stress1 and water 
stress2. 

 
 
Table 4-6.  Genetic covariance between grain yield and associated traits 

  GY LW SW PH TGL TLN 

GY 1 0.61 0.70 0.41 0.43 0.51 

LW 0.31 1 0.89 0.60 0.87 0.88 

SW 0.44 0.74 1 0.81 0.66 0.71 

PH 0.18 0.26 0.70 1 0.31 0.39 

TGL 0.24 0.93 0.60 0.12 1 0.98 

TLN 0.29 0.94 0.68 0.18 0.99 1 
Values for vegetative water stress are below the diagonal and those above the diagonal 
are for pre-flowering water stress 
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Table 4-7.  Prediction accuracy of multi-traits models  

    Prediction accuracy 

Trait aux_traits PWS VWS 

Grain yield LW 0.37 0.13 

Grain yield PH 0.36 0.13 

Grain yield TGL 0.37 0.13 

Grain yield SW 0.36 0.13 

Grain yield LW+ PH 0.36 0.13 

Grain yield LW+TGL 0.37 0.14 

Grain yield LW+ SW 0.36 0.13 

Grain yield PH+TGL 0.36 0.13 

Grain yield PH+SW 0.36 0.13 

Grain yield TGL+SW 0.36 0.13 

Grain yield LW+PH+TGL+SW 0.36 0.16 
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CHAPTER 5 
DISCUSSION 

Phenotypic analysis detected significant (P<0.05) differences among the 

sorghum genotypes across the three environments. G x E was highly significant, 

indicating that the impact of the water treatment varied among genotypes. 

According to Borrell et al (2006), the genetic variation between the genotypes 

can be due to morphological and physiological modifications. Low heritability 

values were observed for grain yield across the three environments. The low 

heritability estimates (broad-sense or genomic) for grain yield is due to the direct 

and indirect accumulative effects of yield components on grain yield (Bello et al. 

2007). The low heritability of grain yield across environments was consistent with 

findings from previous studies conducted on sorghum biomass (Velazco et al. 

2019; Kenga et al. 2006). However, for some other studies, high heritability 

estimates were observed for grain yield (Al-Naggar et al. 2018; Hamidou et al. 

2018), giving the possibility to successfully perform direct selection for this trait.  

The difference between the two heritability estimated values may be explained by 

the factors that affect the phenotypic variances of the genotypes across the 

treatments. For example, the grain yield was slightly affected by midge and the 

plants were completely stunted in the vegetative water stress treatment.  Leaf 

weight (stay-green trait) was positively correlated with grain yield under fully 

irrigated and water stress conditions, supporting its potential utility for indirect 

selection for grain yield improvement under drought stress.  The results of the 

present study are in agreement with previous experiments in regard to positive 

correlation between grain yield and most of the traits (Kenga et al. 2006). The 

positive significant correlation observed between grain yield and soluble solid 
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concentration suggested that the trade-off between those traits may be genotype 

dependent (Gutjahr et al. 2013a) and that tandem improvement of grain yield and 

stem sugar content is possible in sorghum (Murray et al. (2008). These results 

also suggested that the sorghum breeding program at CHIBAS is on the right 

track to develop multi-purpose sorghum varieties (food, feed, and fuel).  

Discovery and application of molecular markers such as SNPs and simple 

sequence repeats has revolutionized modern plant breeding for many species. 

Although, GBS can be disadvantageous due to the amount of missing data 

generated (Beissinger et al. 2013), it remains one of the quickest and most cost-

effective genotyping tools (Poland and Rife, 2012). The number of SNPs 

discovered through GBS in the current study provided adequate genome 

coverage, allowing model training and testing for genomic selection. Similar 

studies have successfully employed GBS derived SNPs in sorghum for genomic 

selection studies (Habier et al. 2009; Mulder et al. 2012; Oliveira et al. 2018).  

The accuracy of prediction models in genomic selection is important for 

the success of the breeding program (Gianola 2013; Crossa et al. 2017). In the 

current study, there were minimal differences in prediction accuracies across the 

models tested, perhaps due to similarities in biological and statistical 

assumptions across the models (Gianola et al. 2013; Hayes et al. 2009; De los 

Campos et al. 2013; Ferrão et al. 2018). Bayes B had the highest prediction 

accuracy compared to other models.  According to Meuwissen et al. (2001), the 

modest improvement of Bayes B over the other methods is due to its great 

flexibility to work with contrasting genetic architectures. In addition, some authors 

have reported that methods where the effect of SNPs are assumed to have a 
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small variance with a normal distribution (e.g. BRR) are less efficient than 

methods that allow mutations with moderate to large effects (e.g. Bayes A and 

Bayes B)  (Meuwissen et al. 2001; Mota et al. 2018; Gapare et al. 2018). 

Different studies on comparison and adjustment of statistical models in genomic 

selection for different species have reported similar results across the models 

(Oliveira et al. 2018; Haile et al. 2019; Ferrão et al. 2018; Wang et al. 2015). De 

Los Campos et al. (2013) reported that the large gap between the number of 

observations and parameters can constrain the statistical learning of the models, 

which may lead to similar predictive performances of the models.  

Computation time across models is an important consideration in cases 

where resources are limited (Ferrão et al. 2018; Mota et al. 2018). In such cases, 

the least computationally intensive model should be considered. In the current 

study, the mean elapsed time required by each tested model substantially 

differed across the models. In agreement with previous studies, Bayes B was the 

most resource intensive model, while BRR required the least resources (Mota et 

al. 2018; Ferrão et al. 2018). Since BRR yielded similar prediction accuracies as 

the other models, yet with less computational resources, it may be an efficient 

model for implementation of genomic selection in small breeding programs, 

especially in developing countries with limited resources (Guo et al. 2012; Ferrão 

et al. 2018; Mota et al. 2018).  

Genotype-by-environment interaction is an important factor affecting both 

phenotypic and genomic selection accuracy (Haile et al. 2019). Studies on the 

impact of G x E in genomic selection for sorghum is limited. As expected, within-

environment prediction (scenarios 1-3) provided higher predictive accuracy 
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values than across-environment predictions when the vegetative water stress 

environment is involved (scenarios 6-9), confirming the fact that expression of 

genotypes is generally dependent on the environmental conditions. Similar 

results were observed in previous study in coffee and lentil (Ferrão et al. 2018; 

Haile et al. 2019). Theoretically, the interaction between genotype and the 

environment occurs, because the final state of a trait is determined by its genetic 

make-up, which is expressed according to the conditions in which the genotype 

is developing (Malosetti et al. 2013). The genotypic variation is captured by the 

estimation of marker effects, which eventually influence the predictions (Ferrão et 

al. 2018). Considering the complex mechanisms and processes associated with 

phenotypic response across diverse and contrasting environments, there is need 

to develop rapid and resource-efficient analytical tools to help breeders perform 

accurate prediction (Malosetti et al. 2013). In the current study, modelling of the 

interaction terms (G x E) helped improve the prediction accuracy for stem weight, 

stem diameter, plant height, heading, maturity, leaf weight and soluble solids 

concentration across fully irrigated and pre-flowering water stress environments 

(scenarios 5 vs 2). Previous studies have demonstrated that modeling G x E can 

improve the accuracy of genomic predictions, thus suggesting that G x E 

interactions are important in genomic selection (Crossa et al. 2015; Jarquín et al. 

2014; Haile et al. 2019). Generally, all scenarios that involved prediction of 

performance in the vegetative water stress environment revealed low prediction 

accuracies (scenarios 6, 7, 8, 9). These results suggested that the performance 

of the sorghum genotypes was more impacted by vegetative water stress. 

Consequently, further re-training of the models may be necessary to increase the 
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prediction accuracy. Such efforts would potentially help identify a set of markers 

with stable effects across environments, thus reducing G × E interactions (López-

Cruz et al. 2015).  

Grain yield and concentration of soluble solids are key target traits for the 

sorghum breeding program at CHIBAS. While all the models tested showed high 

predictive ability for soluble solids within and across environments, low predictive 

accuracies were observed for grain yield, especially in the water stress 

environments. This was expected because grain yield is a complex quantitative 

trait controlled by many genes of small effects, and heavily influenced by G x E 

(Schulthess et al. 2015; Velazco et al. 2019; Fernandes et al. 2017). However, 

previous studies have shown that prediction accuracy for grain yield across 

environments can be improved by including correlated traits in the models in a 

process called multi-trait genomic selection or trait-assisted genomic selection 

(Fernandes et al. 2017; Haile et al. 2019; Velazco et al. 2019). A phenotypic 

correlation assumes that phenotypic values for two traits are associated due to 

genetic and non-genetic causes (Bernardo 2010). The ideal scenario to exploit 

multi-trait genomic selection would be when a relatively highly heritable indicator 

trait is associated with the prediction of a relatively low heritable trait with scarce 

phenotypic records (Schulthess et al. 2015). Given the low prediction accuracy 

for grain yield observed in the current study, multi-trait genomic selection was 

attempted. Our results suggested no improvement in the prediction accuracy of 

grain yield based on multi-trait methods, contrary to previous studies that have 

shown superiority of this strategy over single-trait genomic selection (Schulthess 

et al. 2015; Guo et al. 2014; Jia and Jannink 2012). This result was not expected 
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as grain yield has low heritability and is moderately correlated with other traits. 

However, our findings are similar to those reported in sorghum and maize 

(Fernandes et al. 2017; Dos Santos et al. 2016). The lack of improvement of the 

multivariate models might be due to low- to- moderate magnitude correlation and 

moderate heritabilities between the traits studied (Dos Santos et al. 2016). In 

addition, a study conducted by Guo et al. (2014) suggested that multivariate 

genomic models can be superior to univariate models when unbalanced data 

scenarios are considered, which was not the case for this study. These authors 

recommended the application of multivariate model only in specific cases (Guo et 

al. 2014). 
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CHAPTER 6 
CONCLUSIONS 

 Wide phenotypic variation was observed for all traits across the 

three environments in response to water availability. Among all the traits, grain 

yield was the least stable across the environments. Prediction accuracy across 

the models was very similar for all traits. However, Bayes B performed slightly 

better than the other models. The BRR model required the least computation 

resources and may be adopted in small breeding programs with limited 

resources, especially in developing countries like Haiti. It could also be 

concluded that single-trait models yielded similar prediction accuracy as multi-

trait models for grain yield. Prediction accuracy for grain yield under water stress 

conditions was lower than that under fully irrigated conditions. The prediction 

accuracy for the secondary traits (leaf weight, maturity, heading, and plant 

height) were generally higher than the prediction accuracy of grain yield under 

almost all the scenarios. In a modern breeding scheme, multi-environment field 

trials might be considered in advanced generations in order to re-estimate the 

markers effects. The challenge is that multi-location field trials are laborious and 

costly. Therefore, using data from one site to predict the performance in 

independent sites is necessary for plant breeding. Although, within-environment 

prediction accuracy was higher than that across irrigated and vegetative water 

stress environments, the values were moderate to high when irrigated 

environment was used to predict trait performance in pre-flowering water stress 

environment. Considering the changes in environment (new diseases, new pests, 

soil degradation, and changes in water availability), these results suggested that 

across environment GS could be a potential strategy for rapid, accurate and 
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resource efficient prediction. Overall, accuracies of genomic prediction obtained  

in this study are encouraging for implementation of GS in small breeding 

programs. Nevertheless, further studies involving multi-trait modelling are 

required to assess usefulness of highly correlated traits (highly heritable, cheap 

and easy to sample) in improving prediction accuracies for grain yield in 

sorghum.  
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